Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 2/2012

01-11-2012 | Review

Current application of neurochemical biomarkers in the prediction and differential diagnosis of Alzheimer’s disease and other neurodegenerative dementias

Authors: J. Genius, H. Klafki, J. Benninghoff, H. Esselmann, J. Wiltfang

Published in: European Archives of Psychiatry and Clinical Neuroscience | Special Issue 2/2012

Login to get access

Abstract

In light of the dramatically increasing prevalence of Alzheimer’s disease (AD) to be expected in the future, the development of novel therapeutics, improved differential and early diagnostics, and means for the identification of individuals at risk are urgently needed. At present, instruments for a reliable differential diagnosis in clinical dementia, mild cognitive impairment, or prodromal stages have direct practical implications for differentiating secondary dementias from neurodegenerative conditions and for treatment decisions. It may also be reasonable to enforce the incorporation of biomarkers into clinical studies as surrogate outcome parameters and as an attempt to optimize recruitment criteria. Recently, revised research criteria increasingly rely on the interpretation of biomarker patterns, including neuroimaging and CSF-based neurochemical dementia diagnosis (NDD) in supporting the clinical diagnosis. Here, we review the performance of current core CSF biomarkers (Aβ42 peptide, total tau protein and phosphorylated tau species) and try to define objectives for prospective markers, also considering blood-based tests, which would increase the acceptance and wide application of NDD. Moreover, we evaluate the role and the limitations of genotyping in the predictive diagnosis of AD.
Literature
1.
go back to reference Albert MS, DeKosky ST et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279CrossRefPubMedPubMedCentral Albert MS, DeKosky ST et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279CrossRefPubMedPubMedCentral
2.
go back to reference Alexander GE, Chen K et al (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatr 159(5):738–745CrossRefPubMed Alexander GE, Chen K et al (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatr 159(5):738–745CrossRefPubMed
3.
go back to reference Anchisi D, Borroni B et al (2005) Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 62(11):1728–1733CrossRefPubMed Anchisi D, Borroni B et al (2005) Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 62(11):1728–1733CrossRefPubMed
4.
go back to reference Andreasson U, Portelius E et al (2007) Aspects of beta-amyloid as a biomarker for Alzheimer’s disease. Biomarkers Med 1(1):59–78CrossRef Andreasson U, Portelius E et al (2007) Aspects of beta-amyloid as a biomarker for Alzheimer’s disease. Biomarkers Med 1(1):59–78CrossRef
5.
go back to reference Arai H, Ishiguro K et al (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol 166(1):201–203CrossRefPubMed Arai H, Ishiguro K et al (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol 166(1):201–203CrossRefPubMed
6.
go back to reference Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10):605–613CrossRefPubMed Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10):605–613CrossRefPubMed
7.
go back to reference Blennow K, Vanmechelen E et al (2001) CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol Neurobiol 24(1–3):87–97CrossRefPubMed Blennow K, Vanmechelen E et al (2001) CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol Neurobiol 24(1–3):87–97CrossRefPubMed
8.
go back to reference Buee L, Bussiere T et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1):95–130CrossRefPubMed Buee L, Bussiere T et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1):95–130CrossRefPubMed
9.
go back to reference Buerger K, Ewers M et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain J Neurol 129(Pt 11):3035–3041CrossRef Buerger K, Ewers M et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain J Neurol 129(Pt 11):3035–3041CrossRef
10.
go back to reference Buerger K, Teipel SJ et al (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59(4):627–629CrossRefPubMed Buerger K, Teipel SJ et al (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59(4):627–629CrossRefPubMed
11.
go back to reference Chetelat G, Desgranges B et al (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60(8):1374–1377CrossRefPubMed Chetelat G, Desgranges B et al (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 60(8):1374–1377CrossRefPubMed
12.
go back to reference Clarfield AM (2003) The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med 163(18):2219–2229CrossRefPubMed Clarfield AM (2003) The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med 163(18):2219–2229CrossRefPubMed
13.
go back to reference Fagan AM, Mintun MA et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59(3):512–519CrossRefPubMed Fagan AM, Mintun MA et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59(3):512–519CrossRefPubMed
14.
go back to reference Fagan AM, Mintun MA et al (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1(8–9):371–380CrossRefPubMedPubMedCentral Fagan AM, Mintun MA et al (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1(8–9):371–380CrossRefPubMedPubMedCentral
15.
go back to reference Farrer LA, Cupples LA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356CrossRefPubMed Farrer LA, Cupples LA et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356CrossRefPubMed
17.
go back to reference Frankfort SV, Tulner LR et al (2008) Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 3(2):123–131CrossRefPubMed Frankfort SV, Tulner LR et al (2008) Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 3(2):123–131CrossRefPubMed
18.
go back to reference Hampel H, Broich K et al (2009) Biological markers for early detection and pharmacological treatment of Alzheimer’s disease. Dialogues Clin Neurosci 11(2):141–157PubMedPubMedCentral Hampel H, Broich K et al (2009) Biological markers for early detection and pharmacological treatment of Alzheimer’s disease. Dialogues Clin Neurosci 11(2):141–157PubMedPubMedCentral
19.
go back to reference Hampel H, Buerger K et al (2004) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatr 61(1):95–102CrossRefPubMed Hampel H, Buerger K et al (2004) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatr 61(1):95–102CrossRefPubMed
20.
go back to reference Hampel H, Burger K et al (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 4(1):38–48CrossRefPubMed Hampel H, Burger K et al (2008) Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 4(1):38–48CrossRefPubMed
21.
go back to reference Hampel H, Frank R et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560–574CrossRefPubMed Hampel H, Frank R et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560–574CrossRefPubMed
22.
go back to reference Hampel H, Wilcock G et al (2011) Biomarkers for Alzheimer’s disease therapeutic trials. Prog Neurobiol 95(4):579–593CrossRefPubMed Hampel H, Wilcock G et al (2011) Biomarkers for Alzheimer’s disease therapeutic trials. Prog Neurobiol 95(4):579–593CrossRefPubMed
23.
go back to reference Hansson O, Zetterberg H et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3):228–234CrossRefPubMed Hansson O, Zetterberg H et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3):228–234CrossRefPubMed
24.
go back to reference Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356CrossRefPubMed Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356CrossRefPubMed
25.
go back to reference Harold D, Abraham R et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093CrossRefPubMedPubMedCentral Harold D, Abraham R et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093CrossRefPubMedPubMedCentral
26.
go back to reference Haroutunian V, Schnaider-Beeri M et al (2008) Role of the neuropathology of Alzheimer disease in dementia in the oldest-old. Arch Neurol 65(9):1211–1217CrossRefPubMedPubMedCentral Haroutunian V, Schnaider-Beeri M et al (2008) Role of the neuropathology of Alzheimer disease in dementia in the oldest-old. Arch Neurol 65(9):1211–1217CrossRefPubMedPubMedCentral
27.
go back to reference Hollingworth P, Harold D et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435CrossRefPubMedPubMedCentral Hollingworth P, Harold D et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435CrossRefPubMedPubMedCentral
28.
go back to reference Hu YY, He SS et al (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320(3):156–160CrossRefPubMed Hu YY, He SS et al (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320(3):156–160CrossRefPubMed
29.
go back to reference Jack CR Jr, Albert MS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):257–262CrossRefPubMedPubMedCentral Jack CR Jr, Albert MS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):257–262CrossRefPubMedPubMedCentral
30.
go back to reference Jonsson T, Atwal JK et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488(7409):96–99CrossRefPubMed Jonsson T, Atwal JK et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488(7409):96–99CrossRefPubMed
32.
go back to reference Klunk WE, Engler H et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319CrossRefPubMed Klunk WE, Engler H et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319CrossRefPubMed
33.
go back to reference Kornhuber J, Schmidtke K et al (2009) Early and differential diagnosis of dementia and mild cognitive impairment: design and cohort baseline characteristics of the German Dementia Competence Network. Dement Geriatr Cogn Disord 27(5):404–417CrossRefPubMed Kornhuber J, Schmidtke K et al (2009) Early and differential diagnosis of dementia and mild cognitive impairment: design and cohort baseline characteristics of the German Dementia Competence Network. Dement Geriatr Cogn Disord 27(5):404–417CrossRefPubMed
34.
go back to reference Lambert JC, Heath S et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099CrossRefPubMed Lambert JC, Heath S et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099CrossRefPubMed
35.
go back to reference Li G, Sokal I et al (2007) CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 69(7):631–639CrossRefPubMed Li G, Sokal I et al (2007) CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 69(7):631–639CrossRefPubMed
36.
38.
go back to reference Mattsson N, Andreasson U et al (2011) The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement 7(4):386–395CrossRefPubMedPubMedCentral Mattsson N, Andreasson U et al (2011) The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement 7(4):386–395CrossRefPubMedPubMedCentral
39.
go back to reference Mattsson N, Zetterberg H et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4):385–393CrossRefPubMed Mattsson N, Zetterberg H et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4):385–393CrossRefPubMed
40.
go back to reference Mayeux R, Saunders AM et al (1998) Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 338(8):506–511CrossRefPubMed Mayeux R, Saunders AM et al (1998) Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 338(8):506–511CrossRefPubMed
41.
go back to reference McKhann G, Drachman D et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944CrossRefPubMed McKhann G, Drachman D et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944CrossRefPubMed
42.
go back to reference McKhann GM, Knopman DS et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentral McKhann GM, Knopman DS et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentral
43.
44.
go back to reference Mitchell AJ (2009) CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 51 studies. J Neurol Neurosurg Psychiatry 80(9):966–975CrossRefPubMed Mitchell AJ (2009) CSF phosphorylated tau in the diagnosis and prognosis of mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 51 studies. J Neurol Neurosurg Psychiatry 80(9):966–975CrossRefPubMed
45.
go back to reference Okello A, Koivunen J et al (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73(10):754–760CrossRefPubMedPubMedCentral Okello A, Koivunen J et al (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73(10):754–760CrossRefPubMedPubMedCentral
46.
go back to reference Otto M, Wiltfang J et al (2002) Tau protein and 14–3–3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 58(2):192–197CrossRefPubMed Otto M, Wiltfang J et al (2002) Tau protein and 14–3–3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 58(2):192–197CrossRefPubMed
47.
go back to reference Reivich M, Kuhl D et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137CrossRefPubMed Reivich M, Kuhl D et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137CrossRefPubMed
48.
go back to reference Richard E, Schmand B et al (2012) The Alzheimer myth and biomarker research in Dementia. J Alzheimers Dis, JAD Richard E, Schmand B et al (2012) The Alzheimer myth and biomarker research in Dementia. J Alzheimers Dis, JAD
49.
go back to reference Risacher SL, Saykin AJ et al (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6(4):347–361CrossRefPubMedPubMedCentral Risacher SL, Saykin AJ et al (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6(4):347–361CrossRefPubMedPubMedCentral
50.
go back to reference Roses AD (1995) Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease. Ann Neurol 38(1):6–14CrossRefPubMed Roses AD (1995) Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease. Ann Neurol 38(1):6–14CrossRefPubMed
51.
go back to reference Rowe CC, Ackerman U et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7(2):129–135CrossRefPubMed Rowe CC, Ackerman U et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7(2):129–135CrossRefPubMed
52.
go back to reference Saunders AM, Hulette O et al (1996) Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348(9020):90–93CrossRefPubMed Saunders AM, Hulette O et al (1996) Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348(9020):90–93CrossRefPubMed
53.
go back to reference Savva GM, Wharton SB et al (2009) Age, neuropathology, and dementia. N Engl J Med 360(22):2302–2309CrossRefPubMed Savva GM, Wharton SB et al (2009) Age, neuropathology, and dementia. N Engl J Med 360(22):2302–2309CrossRefPubMed
54.
go back to reference Schmidt C, Wolff M et al (2011) Rapidly progressive Alzheimer disease. Arch Neurol 68(9):1124–1130CrossRefPubMed Schmidt C, Wolff M et al (2011) Rapidly progressive Alzheimer disease. Arch Neurol 68(9):1124–1130CrossRefPubMed
55.
go back to reference Schoonenboom NS, Reesink FE et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1):47–54CrossRefPubMed Schoonenboom NS, Reesink FE et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1):47–54CrossRefPubMed
56.
go back to reference Seppala TT, Nerg O et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78(20):1568–1575CrossRefPubMed Seppala TT, Nerg O et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78(20):1568–1575CrossRefPubMed
57.
go back to reference Shaw LM, Vanderstichele H et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413CrossRefPubMedPubMedCentral Shaw LM, Vanderstichele H et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413CrossRefPubMedPubMedCentral
58.
go back to reference Shoji M, Matsubara E et al (1998) Combination assay of CSF tau, A beta 1–40 and A beta 1–42(43) as a biochemical marker of Alzheimer’s disease. J Neurol Sci 158(2):134–140CrossRefPubMed Shoji M, Matsubara E et al (1998) Combination assay of CSF tau, A beta 1–40 and A beta 1–42(43) as a biochemical marker of Alzheimer’s disease. J Neurol Sci 158(2):134–140CrossRefPubMed
59.
go back to reference Snider BJ, Fagan AM et al (2009) Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Arch Neurol 66(5):638–645CrossRefPubMedPubMedCentral Snider BJ, Fagan AM et al (2009) Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Arch Neurol 66(5):638–645CrossRefPubMedPubMedCentral
60.
go back to reference Sperling RA, Aisen PS et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292CrossRefPubMedPubMedCentral Sperling RA, Aisen PS et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292CrossRefPubMedPubMedCentral
61.
go back to reference Strozyk D, Blennow K et al (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4):652–656CrossRefPubMed Strozyk D, Blennow K et al (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4):652–656CrossRefPubMed
62.
go back to reference Sunderland T, Linker G et al (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289(16):2094–2103CrossRefPubMed Sunderland T, Linker G et al (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289(16):2094–2103CrossRefPubMed
63.
go back to reference Teipel SJ, Meindl T et al (2008) Novel MRI techniques in the assessment of dementia. Euro J Nucl Med Mol Imaging 35(Suppl 1):S58–S69CrossRef Teipel SJ, Meindl T et al (2008) Novel MRI techniques in the assessment of dementia. Euro J Nucl Med Mol Imaging 35(Suppl 1):S58–S69CrossRef
64.
go back to reference Thal DR, Rub U et al (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800CrossRefPubMed Thal DR, Rub U et al (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800CrossRefPubMed
65.
go back to reference Vemuri P, Wiste HJ et al (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73(4):287–293CrossRefPubMedPubMedCentral Vemuri P, Wiste HJ et al (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73(4):287–293CrossRefPubMedPubMedCentral
66.
go back to reference Visser PJ, Verhey F et al (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8(7):619–627CrossRefPubMed Visser PJ, Verhey F et al (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8(7):619–627CrossRefPubMed
67.
go back to reference Welge V, Fiege O et al (2009) Combined CSF tau, p-tau181 and amyloid-beta 38/40/42 for diagnosing Alzheimer’s disease. J Neural Trans 116(2):203–212CrossRef Welge V, Fiege O et al (2009) Combined CSF tau, p-tau181 and amyloid-beta 38/40/42 for diagnosing Alzheimer’s disease. J Neural Trans 116(2):203–212CrossRef
68.
go back to reference Wiltfang J, Otto M et al (1999) Isoform pattern of 14–3–3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J Neurochem 73(6):2485–2490CrossRefPubMed Wiltfang J, Otto M et al (1999) Isoform pattern of 14–3–3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J Neurochem 73(6):2485–2490CrossRefPubMed
69.
go back to reference Zerr I, Bodemer M et al (1998) Detection of 14–3–3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 43(1):32–40CrossRefPubMed Zerr I, Bodemer M et al (1998) Detection of 14–3–3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 43(1):32–40CrossRefPubMed
70.
go back to reference Zetzsche T, Rujescu D et al (2010) Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 10(5):667–690CrossRefPubMed Zetzsche T, Rujescu D et al (2010) Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 10(5):667–690CrossRefPubMed
Metadata
Title
Current application of neurochemical biomarkers in the prediction and differential diagnosis of Alzheimer’s disease and other neurodegenerative dementias
Authors
J. Genius
H. Klafki
J. Benninghoff
H. Esselmann
J. Wiltfang
Publication date
01-11-2012
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue Special Issue 2/2012
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-012-0362-3

Other articles of this Special Issue 2/2012

European Archives of Psychiatry and Clinical Neuroscience 2/2012 Go to the issue