Skip to main content
Top
Published in: Tumor Biology 10/2016

01-10-2016 | Original Article

Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer

Authors: Qianqian Sun, Wenjing Zhang, Yanjie Guo, Zhuyao Li, Xiaonan Chen, Yuanyuan Wang, Yuwen Du, Wenqiao Zang, Guoqiang Zhao

Published in: Tumor Biology | Issue 10/2016

Login to get access

Abstract

In this work, the in vitro experiments about biological mechanisms of curcumin were conducted using the gastric cancer cell lines SGC-7901 and BGC-823. After 24-h exposure to curcumin at the concentrations of 5, 10, 15, 20, and 40 μmol/L, two cells showed the decreased proliferation and increased apoptosis abilities. Real-time PCR, Cell Counting Kit-8 (CCK-8) assay, western blotting, and cell apoptosis assay were used to further study the underlying mechanisms of curcumin. The first stage of our studies showed that curcumin affected the expression of miR-33b, which, in turn, affected the expression of the X-linked inhibitor of apoptosis protein (XIAP) messenger RNA (mRNA). Next, curcumin was also identified to regulate the proliferation and apoptosis of SGC-7901 and BGC-823 cells. Further bioinformatics analysis and luciferase reporter assays proved that XIAP was one of the target genes of miR-33b. In the next stage, SGC-7901 and BGC-823 cells were treated with 20 μL curcumin, miR-33b mimics, and small interfering RNA (siRNA) of XIAP, respectively. The results showed that curcumin had similar effects on cell growth and apoptosis as the upregulation of miR-33b and the upregulation of the siRNA of XIAP. The results that followed from the restore experiments showed that curcumin affected cell growth and apoptosis presumably by upregulating the XIAP targeting in gastric cancer. Collectively, our results indicate that curcumin-miR-33b-XIAP coupling might be an important mechanism by which curcumin induces the apoptosis of SGC-7901 and BGC-823 cells.
Literature
1.
go back to reference Piazuelo MB, Correa P. Gastric cáncer: overview. Colomb Med (Cali). 2013;44:192–201. Piazuelo MB, Correa P. Gastric cáncer: overview. Colomb Med (Cali). 2013;44:192–201.
2.
go back to reference Takashima A, Shirao K, Hirashima Y, Takahari D, Okita NT, Nakajima TE, et al. Sequential chemotherapy with methotrexate and 5-fluorouracil for chemotherapy-naive advanced gastric cancer with disseminated intravascular coagulation at initial diagnosis. J Cancer Res Clin Oncol. 2010;136:243–8.CrossRefPubMed Takashima A, Shirao K, Hirashima Y, Takahari D, Okita NT, Nakajima TE, et al. Sequential chemotherapy with methotrexate and 5-fluorouracil for chemotherapy-naive advanced gastric cancer with disseminated intravascular coagulation at initial diagnosis. J Cancer Res Clin Oncol. 2010;136:243–8.CrossRefPubMed
4.
go back to reference Hobert O. Gene regulation by transcription factors and transnational silencing. Cell. 2007;131:25–8.CrossRef Hobert O. Gene regulation by transcription factors and transnational silencing. Cell. 2007;131:25–8.CrossRef
5.
6.
go back to reference Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, et al. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS One. 2013;8:e59667.CrossRefPubMedPubMedCentral Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, et al. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS One. 2013;8:e59667.CrossRefPubMedPubMedCentral
7.
go back to reference Wu C, Zheng X, Li X, Fesler A, Hu W, Chen L, et al. Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation. Oncotarget. 2016;7:14522–36.PubMedPubMedCentral Wu C, Zheng X, Li X, Fesler A, Hu W, Chen L, et al. Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation. Oncotarget. 2016;7:14522–36.PubMedPubMedCentral
8.
go back to reference Li Y, Chen D, Jin LU, Liu J, Li Y, Su Z, et al. Oncogenic microRNA-142-3p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Oncol Lett. 2016;11:1235–41.PubMed Li Y, Chen D, Jin LU, Liu J, Li Y, Su Z, et al. Oncogenic microRNA-142-3p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Oncol Lett. 2016;11:1235–41.PubMed
9.
go back to reference Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, et al. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 2016;7:538–49.PubMed Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, et al. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 2016;7:538–49.PubMed
10.
go back to reference Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2014;21:343–50.CrossRefPubMed Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2014;21:343–50.CrossRefPubMed
11.
go back to reference Zhang F, Yang R, Zhang G, Cheng R, Bai Y, Zhao H, et al. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression. Tumour Biol. 2015 Dec 2. Zhang F, Yang R, Zhang G, Cheng R, Bai Y, Zhao H, et al. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression. Tumour Biol. 2015 Dec 2.
12.
go back to reference Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.CrossRefPubMed Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.CrossRefPubMed
13.
go back to reference Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One. 2016;11:e0146553.CrossRefPubMedPubMedCentral Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One. 2016;11:e0146553.CrossRefPubMedPubMedCentral
14.
go back to reference Huang H, Chen X, Li D, He Y, Li Y, Du Z, et al. Combination of α-Tomatine and curcumin inhibits growth and induces apoptosis in human prostate cancer cells. PLoS One. 2015;10:e0144293.CrossRefPubMedPubMedCentral Huang H, Chen X, Li D, He Y, Li Y, Du Z, et al. Combination of α-Tomatine and curcumin inhibits growth and induces apoptosis in human prostate cancer cells. PLoS One. 2015;10:e0144293.CrossRefPubMedPubMedCentral
15.
go back to reference Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ, et al. Curcumin inhibits non-small cell lung cancer cells metastasis through the Adiponectin/NF-κb/MMPs signaling pathway. PLoS One. 2015;10:e0144462.CrossRefPubMedPubMedCentral Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ, et al. Curcumin inhibits non-small cell lung cancer cells metastasis through the Adiponectin/NF-κb/MMPs signaling pathway. PLoS One. 2015;10:e0144462.CrossRefPubMedPubMedCentral
16.
go back to reference Lin ML, YC L, Chen HY, Lee CC, Chung JG, Chen SS. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol Carcinog. 2014;53:360–79.CrossRefPubMed Lin ML, YC L, Chen HY, Lee CC, Chung JG, Chen SS. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol Carcinog. 2014;53:360–79.CrossRefPubMed
17.
go back to reference Liu X, Sun K, Song A, Zhang X, Zhang X, He X. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Oncol. 2014;12:389.CrossRefPubMedPubMedCentral Liu X, Sun K, Song A, Zhang X, Zhang X, He X. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Oncol. 2014;12:389.CrossRefPubMedPubMedCentral
18.
go back to reference Ding XQ, TT G, Wang W. Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res. 2015;59:2355–70.CrossRefPubMed Ding XQ, TT G, Wang W. Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res. 2015;59:2355–70.CrossRefPubMed
19.
go back to reference Guo H, Xu Y, Q F. Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol. 2015;36:8511–7.CrossRefPubMed Guo H, Xu Y, Q F. Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol. 2015;36:8511–7.CrossRefPubMed
20.
go back to reference Zhang P, Bai H, Liu G, Wang H, Chen F, Zhang B, et al. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 2015;234:151–61.CrossRefPubMed Zhang P, Bai H, Liu G, Wang H, Chen F, Zhang B, et al. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 2015;234:151–61.CrossRefPubMed
21.
go back to reference Zhou X, Wang W, Li P, Zheng Z, Tu Y, Zhang Y, et al. Curcumin enhances the effects of 5-fluorouracil and Oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res. 2016;23:29–34.CrossRefPubMed Zhou X, Wang W, Li P, Zheng Z, Tu Y, Zhang Y, et al. Curcumin enhances the effects of 5-fluorouracil and Oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res. 2016;23:29–34.CrossRefPubMed
22.
go back to reference Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774–83.CrossRefPubMed Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774–83.CrossRefPubMed
23.
go back to reference Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, et al. MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 2015;5:9995.CrossRefPubMedPubMedCentral Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, et al. MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 2015;5:9995.CrossRefPubMedPubMedCentral
24.
go back to reference Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, et al. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol 2015;47:2141–2152. Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, et al. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol 2015;47:2141–2152.
25.
go back to reference Xu N, Li Z, Yu Z, Yan F, Liu Y, Lu X, et al. MicroRNA-33b suppresses migration and invasion by targeting c-Myc in osteosarcoma cells. PLoS One. 2014;9:e115300.CrossRefPubMedPubMedCentral Xu N, Li Z, Yu Z, Yan F, Liu Y, Lu X, et al. MicroRNA-33b suppresses migration and invasion by targeting c-Myc in osteosarcoma cells. PLoS One. 2014;9:e115300.CrossRefPubMedPubMedCentral
26.
go back to reference Yin H, Song P, Su R, Yang G, Dong L, Luo M, et al. DNA methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer. Sci Rep. 2016;6:18824.CrossRefPubMedPubMedCentral Yin H, Song P, Su R, Yang G, Dong L, Luo M, et al. DNA methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer. Sci Rep. 2016;6:18824.CrossRefPubMedPubMedCentral
27.
go back to reference Hock M, Gibson H, Korneluk RG. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 2001;6:253–61.CrossRef Hock M, Gibson H, Korneluk RG. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 2001;6:253–61.CrossRef
28.
go back to reference Werner TA, Tamkan-Ölcek Y, Dizdar L, Riemer JC, Wolf A, Cupisti K, et al. Survivin and XIAP: two valuable biomarkers in medullary thyroid carcinoma. Br J Cancer. 2016;114:427–34.CrossRefPubMed Werner TA, Tamkan-Ölcek Y, Dizdar L, Riemer JC, Wolf A, Cupisti K, et al. Survivin and XIAP: two valuable biomarkers in medullary thyroid carcinoma. Br J Cancer. 2016;114:427–34.CrossRefPubMed
29.
go back to reference Tong QS, Zheng LD, Wang L, Zeng FQ, Chen FM, Dong JH, et al. Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther. 2005;12:509–14.PubMed Tong QS, Zheng LD, Wang L, Zeng FQ, Chen FM, Dong JH, et al. Downregulation of XIAP expression induces apoptosis and enhances chemotherapeutic sensitivity in human gastric cancer cells. Cancer Gene Ther. 2005;12:509–14.PubMed
Metadata
Title
Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer
Authors
Qianqian Sun
Wenjing Zhang
Yanjie Guo
Zhuyao Li
Xiaonan Chen
Yuanyuan Wang
Yuwen Du
Wenqiao Zang
Guoqiang Zhao
Publication date
01-10-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 10/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5221-9

Other articles of this Issue 10/2016

Tumor Biology 10/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine