Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2013

01-07-2013 | Laboratory Investigation

Curcumin acts anti-proliferative and pro-apoptotic in human meningiomas

Authors: S. Curic, Y. Wu, B. Shan, C. Schaaf, D. Utpadel, M. Lange, D. Kuhlen, M. J. Perone, E. Arzt, G. K. Stalla, U. Renner

Published in: Journal of Neuro-Oncology | Issue 3/2013

Login to get access

Abstract

Meningiomas, the most frequent benign intracranial and intraspinal types of tumors are normally removed by surgery. Complications can occur when the tumor is critically localized and cannot be completely removed or when comorbidities of the mostly elder patients increase the general surgical risk. Thus, alternate medical treatment concepts for the therapy of meningiomas would be desirable. Curcumin, the active ingredient of the spice plant Curcuma longa has shown anti-tumorigenic actions in many different types of tumors and therefore, its effect on growth and apoptosis of meningioma cells was studied in the present paper. In vitro, treatment of the human Ben-Men-1 meningioma cell line and of a series of 21 primary human meningioma cell cultures with curcumin (1–20 μM) strongly reduced the proliferation in all cases in a dose dependent manner. Cell cycle analysis by fluorescence-activated cell sorting showed growth arrest at G2/M phase, which was confirmed by demonstrating the corresponding modulation of proteins involved in G2/M arrest by immunoblotting and/or confocal laser microscopy. High dosages (20, 50 μM) of curcumin induced a significant increase of apoptosis in Ben-Men-1 and primary meningioma cell cultures as demonstrated by morphological changes of cell nuclei, DNA fragmentation, translocation of cell membrane associated phosphatidyl serine and the induction of apoptotic-acting cleaved caspase-3. Our results suggest that the multi-targeting drug curcumin has potent anti-tumorigenic actions in meningioma cells and might therefore be a putative candidate for the pharmacological treatment of meningiomas.
Literature
1.
go back to reference Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391PubMedCrossRef Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391PubMedCrossRef
2.
go back to reference Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I (2011) The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 30:E6PubMed Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I (2011) The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 30:E6PubMed
3.
go back to reference Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, Vecht C (2008) Meningioma. Crit Rev Oncol Hematol 67:153–171PubMedCrossRef Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, Vecht C (2008) Meningioma. Crit Rev Oncol Hematol 67:153–171PubMedCrossRef
4.
go back to reference Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ (2000) Meningiomas. In: Kleihues P, Cavenee WK (eds) World health organization classification of tumours. Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, pp 176–184 Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ (2000) Meningiomas. In: Kleihues P, Cavenee WK (eds) World health organization classification of tumours. Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, pp 176–184
5.
go back to reference Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP (1997) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184CrossRef Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP (1997) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184CrossRef
6.
go back to reference Gutmann DH, Donahoe J, Perry A, Lemk N, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 9:1495–1500PubMedCrossRef Gutmann DH, Donahoe J, Perry A, Lemk N, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 9:1495–1500PubMedCrossRef
7.
go back to reference Smith MJ, O’Sullivan J, Bhaskar SS, Hadfield KD, Poke G, Caird J, Sharif S, Ecles D, Fitzpatrick D, Rawluk D, du Plessis D, Newman WG, Evans DG (2013) Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 45:295–298PubMedCrossRef Smith MJ, O’Sullivan J, Bhaskar SS, Hadfield KD, Poke G, Caird J, Sharif S, Ecles D, Fitzpatrick D, Rawluk D, du Plessis D, Newman WG, Evans DG (2013) Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 45:295–298PubMedCrossRef
8.
go back to reference Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, Avsar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080PubMedCrossRef Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, Avsar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080PubMedCrossRef
9.
go back to reference Perry A, Cai DX, Scheithauer BW, Swanson PE, Lohse CM, Newsham IF, Weaver A, Gutmann DH (2000) Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59:872–879PubMed Perry A, Cai DX, Scheithauer BW, Swanson PE, Lohse CM, Newsham IF, Weaver A, Gutmann DH (2000) Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59:872–879PubMed
10.
go back to reference Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins VP, Reifenberger G (2001) Alterations of the tumor suppressor genes CDKN2A (p16INK4a), p14ARF, CDKN2B (p15INK4b), and CDKN2C (p18INK4c) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669PubMedCrossRef Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins VP, Reifenberger G (2001) Alterations of the tumor suppressor genes CDKN2A (p16INK4a), p14ARF, CDKN2B (p15INK4b), and CDKN2C (p18INK4c) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669PubMedCrossRef
11.
go back to reference Dutour A, Kumar U, Panetta R, Quafik L, Fina F, Sasi R, Patel YC (1998) Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 76:620–627PubMedCrossRef Dutour A, Kumar U, Panetta R, Quafik L, Fina F, Sasi R, Patel YC (1998) Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 76:620–627PubMedCrossRef
13.
14.
go back to reference Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD (2010) Medical therapies for meningiomas. J Neurooncol 99:365–378PubMedCrossRef Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD (2010) Medical therapies for meningiomas. J Neurooncol 99:365–378PubMedCrossRef
15.
go back to reference Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225PubMedCrossRef Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225PubMedCrossRef
16.
go back to reference Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434PubMedCrossRef Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434PubMedCrossRef
17.
go back to reference James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachaminmov AO, Gusella JF, Ramesh V (2009) NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29:4250–4261PubMedCrossRef James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachaminmov AO, Gusella JF, Ramesh V (2009) NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 29:4250–4261PubMedCrossRef
18.
go back to reference Angelo LS, Wu YJ, Meng F, Sun M, Kopetz S, McCutcheon IE, Slopis JM, Kurzrock R (2011) Combining curcumin (diferuloylmethane) and heat shock protein inhibition for neurofibromatosis 2 treatment: analysis of response and resistance pathways. Mol Cancer Ther 10:2094–2103PubMedCrossRef Angelo LS, Wu YJ, Meng F, Sun M, Kopetz S, McCutcheon IE, Slopis JM, Kurzrock R (2011) Combining curcumin (diferuloylmethane) and heat shock protein inhibition for neurofibromatosis 2 treatment: analysis of response and resistance pathways. Mol Cancer Ther 10:2094–2103PubMedCrossRef
19.
go back to reference Pagotto U, Arzberger T, Hopfner U, Sauer J, Renner U, Newton CJ, Lange M, Uhl E, Weindl A, Stalla GK (1995) Expression and localization of endothelin-1 and endothelin receptors in human meningiomas: evidence for a role in tumoral growth. J Clin Invest 96:2017–2025PubMedCrossRef Pagotto U, Arzberger T, Hopfner U, Sauer J, Renner U, Newton CJ, Lange M, Uhl E, Weindl A, Stalla GK (1995) Expression and localization of endothelin-1 and endothelin receptors in human meningiomas: evidence for a role in tumoral growth. J Clin Invest 96:2017–2025PubMedCrossRef
20.
go back to reference Schaaf C, Shan B, Buchfelder M, Losa M, Kreutzer J, Rachinger W, Stalla GK, Schilling T, Arzt E, Perone MJ, Renner U (2009) Curcumin acts as anti-tumorigenic and hormone-suppressive agent in murine and human pituitary tumour cells in vitro and in vivo. Endocr Rel Cancer 16:1339–1350CrossRef Schaaf C, Shan B, Buchfelder M, Losa M, Kreutzer J, Rachinger W, Stalla GK, Schilling T, Arzt E, Perone MJ, Renner U (2009) Curcumin acts as anti-tumorigenic and hormone-suppressive agent in murine and human pituitary tumour cells in vitro and in vivo. Endocr Rel Cancer 16:1339–1350CrossRef
21.
go back to reference Tichomirowa M, Theodoropoulou M, Daly AF, Yassourides A, Hansen S, Lu J, Lange M, Goldbrunner RH, Stalla GK, Renner U (2008) Toll-like receptor 4 is expressed in meningiomas and mediates the antiproliferative action of paclitaxel. Int J Cancer 123:1956–1963PubMedCrossRef Tichomirowa M, Theodoropoulou M, Daly AF, Yassourides A, Hansen S, Lu J, Lange M, Goldbrunner RH, Stalla GK, Renner U (2008) Toll-like receptor 4 is expressed in meningiomas and mediates the antiproliferative action of paclitaxel. Int J Cancer 123:1956–1963PubMedCrossRef
22.
go back to reference Shezad A, Wahid F, Lee YS (2010) Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm Chem Life Sci 9:489–499CrossRef Shezad A, Wahid F, Lee YS (2010) Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm Chem Life Sci 9:489–499CrossRef
23.
go back to reference Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28:1937–1955PubMedCrossRef Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28:1937–1955PubMedCrossRef
24.
go back to reference Yadav VR, Aggarwal BB (2011) Curcumin: a component of the golden spice, targets multiple angiogenic pathways. Cancer Biol Ther 11:236–241PubMedCrossRef Yadav VR, Aggarwal BB (2011) Curcumin: a component of the golden spice, targets multiple angiogenic pathways. Cancer Biol Ther 11:236–241PubMedCrossRef
25.
go back to reference Sung B, Prasad S, Yadav VR, Aggarwal BB (2012) Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 64:173–197PubMedCrossRef Sung B, Prasad S, Yadav VR, Aggarwal BB (2012) Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 64:173–197PubMedCrossRef
26.
go back to reference Schaaf C, Shan B, Onofri C, Stalla GK, Arzt E, Schilling T, Perone MJ, Renner U (2010) Curcumin inhibits the growth, induces apoptosis and modulates the function of pituitary folliculostellate cells. Neuroendocrinology 91:200–210PubMedCrossRef Schaaf C, Shan B, Onofri C, Stalla GK, Arzt E, Schilling T, Perone MJ, Renner U (2010) Curcumin inhibits the growth, induces apoptosis and modulates the function of pituitary folliculostellate cells. Neuroendocrinology 91:200–210PubMedCrossRef
27.
go back to reference Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39PubMedCrossRef Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39PubMedCrossRef
28.
go back to reference Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M, Tridandapani S, Anant S, Kuppusamy P (2007) Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther 6:178–184PubMedCrossRef Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M, Tridandapani S, Anant S, Kuppusamy P (2007) Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther 6:178–184PubMedCrossRef
29.
go back to reference Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA (2011) Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11:144–152PubMedCrossRef Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, Rajasekaran SA (2011) Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11:144–152PubMedCrossRef
30.
go back to reference Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2001) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473 Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2001) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473
31.
go back to reference Liu H-S, Ke C-S, Cheng H-C, Huang C-YF, Su C-L (2011) Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of Aurora A. Mol Pharmacol 80:638–648PubMedCrossRef Liu H-S, Ke C-S, Cheng H-C, Huang C-YF, Su C-L (2011) Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of Aurora A. Mol Pharmacol 80:638–648PubMedCrossRef
32.
go back to reference Zanotto-Filho A, Braganhol E, Edelweiss M, Behr GA, Zanin R, Schröder R, Simoes-Pires A, Battastini AM, Moreira JC (2012) The curry spice curcumin selectively inhibits cancer cell growth in vitro and in a preclinical model of glioblastoma. J Nutr Biochem 23:591–601PubMedCrossRef Zanotto-Filho A, Braganhol E, Edelweiss M, Behr GA, Zanin R, Schröder R, Simoes-Pires A, Battastini AM, Moreira JC (2012) The curry spice curcumin selectively inhibits cancer cell growth in vitro and in a preclinical model of glioblastoma. J Nutr Biochem 23:591–601PubMedCrossRef
33.
34.
go back to reference Lee SJ, Langhans SA (2012) Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis. BMC Cancer 12:44–56PubMedCrossRef Lee SJ, Langhans SA (2012) Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis. BMC Cancer 12:44–56PubMedCrossRef
35.
go back to reference Shishodia S, Amin HM, Lai R, Aggarwal BB (2005) Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70:700–713PubMedCrossRef Shishodia S, Amin HM, Lai R, Aggarwal BB (2005) Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70:700–713PubMedCrossRef
36.
go back to reference Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S (2007) Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21/waf1/cip. Cell Cycle 6:2953–2961PubMedCrossRef Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S (2007) Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21/waf1/cip. Cell Cycle 6:2953–2961PubMedCrossRef
37.
go back to reference Teiten M-H, Gaascht F, Cronauer M, Henry E, Dicato M, Diederich M (2011) Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int J Cancer 38:603–611 Teiten M-H, Gaascht F, Cronauer M, Henry E, Dicato M, Diederich M (2011) Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int J Cancer 38:603–611
38.
go back to reference Wu JC, Lai CS, Badmaev V, Nagabhushanam K, Ho CT, Pan MH (2011) Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3 K/Akt-mTOR and MAPK signaling pathways in human leukemia HL 60 cells. Mol Nutr Food Res 55:1646–1654PubMedCrossRef Wu JC, Lai CS, Badmaev V, Nagabhushanam K, Ho CT, Pan MH (2011) Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3 K/Akt-mTOR and MAPK signaling pathways in human leukemia HL 60 cells. Mol Nutr Food Res 55:1646–1654PubMedCrossRef
39.
go back to reference Jia YL, Li J, Qin ZH, Liang ZQ (2009) Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 11:918–928PubMedCrossRef Jia YL, Li J, Qin ZH, Liang ZQ (2009) Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 11:918–928PubMedCrossRef
40.
go back to reference Qian H, Yang Y, Wang X (2011) Curcumin enhanced adriamycin-indued human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur J Pharmacol Sci 43:125–131CrossRef Qian H, Yang Y, Wang X (2011) Curcumin enhanced adriamycin-indued human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur J Pharmacol Sci 43:125–131CrossRef
41.
go back to reference Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818PubMedCrossRef Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818PubMedCrossRef
42.
go back to reference Cheng AL, Hsu CH, Lin JK, Hsu MM, Yo YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent in patients with high-risk of pre-malignant lesions. Anticancer Res 21:2895–2900 Cheng AL, Hsu CH, Lin JK, Hsu MM, Yo YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent in patients with high-risk of pre-malignant lesions. Anticancer Res 21:2895–2900
43.
go back to reference Sharma RA, Euden SA, Patton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ et al (2004) Phase I clinical trial of curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854PubMedCrossRef Sharma RA, Euden SA, Patton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ et al (2004) Phase I clinical trial of curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854PubMedCrossRef
44.
go back to reference Garcea G, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ, Berry DP (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–1015PubMedCrossRef Garcea G, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ, Berry DP (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–1015PubMedCrossRef
45.
go back to reference Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P (2008) EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle 7:2409–2417PubMed Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P (2008) EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle 7:2409–2417PubMed
46.
go back to reference Li J, Wang Y, Yang C, Wang P, Oelschlager DK, Zheng Y, Tian D-A, Grizzle WE, Buchsbaum DJ, Wan M (2009) Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol 76:81–90PubMedCrossRef Li J, Wang Y, Yang C, Wang P, Oelschlager DK, Zheng Y, Tian D-A, Grizzle WE, Buchsbaum DJ, Wan M (2009) Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol 76:81–90PubMedCrossRef
47.
go back to reference Selvendiran K, Kuppusamy ML, Bratasz A, Tong L, Rivera BK, Rink C, Sen CK, Kalai T, Hideg K, Kuppusamy P (2009) Inhibition of vascular smooth-muscle cell proliferation and arterial restenosis by HO-3867, a novel synthetic curcumoid, through up-regulation of PTEN expression. J Pharmacol Exp Ther 329:959–966PubMedCrossRef Selvendiran K, Kuppusamy ML, Bratasz A, Tong L, Rivera BK, Rink C, Sen CK, Kalai T, Hideg K, Kuppusamy P (2009) Inhibition of vascular smooth-muscle cell proliferation and arterial restenosis by HO-3867, a novel synthetic curcumoid, through up-regulation of PTEN expression. J Pharmacol Exp Ther 329:959–966PubMedCrossRef
48.
go back to reference Shahani K, Swaminathan SK, Freeman D, Blum A, Ma L, Panyam J (2010) Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention. Cancer Res 70:4443–4452PubMedCrossRef Shahani K, Swaminathan SK, Freeman D, Blum A, Ma L, Panyam J (2010) Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention. Cancer Res 70:4443–4452PubMedCrossRef
Metadata
Title
Curcumin acts anti-proliferative and pro-apoptotic in human meningiomas
Authors
S. Curic
Y. Wu
B. Shan
C. Schaaf
D. Utpadel
M. Lange
D. Kuhlen
M. J. Perone
E. Arzt
G. K. Stalla
U. Renner
Publication date
01-07-2013
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2013
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-013-1148-9

Other articles of this Issue 3/2013

Journal of Neuro-Oncology 3/2013 Go to the issue