Skip to main content
Top
Published in: Acta Neurochirurgica 1/2024

Open Access 01-12-2024 | CSF Drainage | Technical Note

Applied deep learning in neurosurgery: identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients

Authors: Thomas Rhomberg, Felipe Trivik-Barrientos, Arsany Hakim, Andreas Raabe, Michael Murek

Published in: Acta Neurochirurgica | Issue 1/2024

Login to get access

Abstract

Background

Over the recent decades, the number of different manufacturers and models of cerebrospinal fluid shunt valves constantly increased. Proper identification of shunt valves on X-ray images is crucial to neurosurgeons and radiologists to derive further details of a specific shunt valve, such as opening pressure settings and MR scanning conditions. The main aim of this study is to evaluate the feasibility of an AI-assisted shunt valve detection system.

Methods

The dataset used contains 2070 anonymized images of ten different, commonly used shunt valve types. All images were acquired from skull X-rays or scout CT-images. The images were randomly split into a 80% training and 20% validation set. An implementation in Python with the FastAi library was used to train a convolutional neural network (CNN) using a transfer learning method on a pre-trained model.

Results

Overall, our model achieved an F1-score of 99% to predict the correct shunt valve model. F1-scores for individual shunt valves ranged from 92% for the Sophysa Sophy Mini SM8 to 100% for several other models.

Conclusion

This technology has the potential to automatically detect different shunt valve models in a fast and precise way and may facilitate the identification of an unknown shunt valve on X-ray or CT scout images. The deep learning model we developed could be integrated into PACS systems or standalone mobile applications to enhance clinical workflows.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bondurant CP, Jimenez DF (1995) Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23(5):254–259CrossRefPubMed Bondurant CP, Jimenez DF (1995) Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23(5):254–259CrossRefPubMed
2.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei F (2009) ImageNet: a large-scale hierarchical image database. 2009 IEEE Conf. Comput. Vis. Pattern Recognit, pp 248–255 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei F (2009) ImageNet: a large-scale hierarchical image database. 2009 IEEE Conf. Comput. Vis. Pattern Recognit, pp 248–255
3.
go back to reference Drake JM, Kestle JRW, Tuli S (2000) CSF shunts 50 years on – past, present and future. Childs Nerv Syst 16(10):800–804CrossRefPubMed Drake JM, Kestle JRW, Tuli S (2000) CSF shunts 50 years on – past, present and future. Childs Nerv Syst 16(10):800–804CrossRefPubMed
4.
go back to reference Fernández-Méndez R, Richards HK, Seeley HM, Pickard JD, Joannides AJ (2019) Current epidemiology of cerebrospinal fluid shunt surgery in the UK and Ireland (2004–2013). J Neurol Neurosurg Amp Psychiatry 90(7):747CrossRef Fernández-Méndez R, Richards HK, Seeley HM, Pickard JD, Joannides AJ (2019) Current epidemiology of cerebrospinal fluid shunt surgery in the UK and Ireland (2004–2013). J Neurol Neurosurg Amp Psychiatry 90(7):747CrossRef
5.
go back to reference Frid-Adar M, Ben-Cohen A, Amer R, Greenspan H (2018) Improving the segmentation of anatomical structures in chest radiographs using U-Net with an ImageNet pre-trained encoder. In: Stoyanov D, Taylor Z, Kainz B et al (eds) Image Anal. Springer International Publishing, Cham, Mov. Organ Breast Thorac. Images, pp 159–168 Frid-Adar M, Ben-Cohen A, Amer R, Greenspan H (2018) Improving the segmentation of anatomical structures in chest radiographs using U-Net with an ImageNet pre-trained encoder. In: Stoyanov D, Taylor Z, Kainz B et al (eds) Image Anal. Springer International Publishing, Cham, Mov. Organ Breast Thorac. Images, pp 159–168
6.
go back to reference Giancardo L, Arevalo O, Tenreiro A, Riascos R, Bonfante E (2018) MRI compatibility: automatic brain shunt valve recognition using feature engineering and deep convolutional neural networks. Sci Rep 8(1):16052ADSCrossRefPubMedPubMedCentral Giancardo L, Arevalo O, Tenreiro A, Riascos R, Bonfante E (2018) MRI compatibility: automatic brain shunt valve recognition using feature engineering and deep convolutional neural networks. Sci Rep 8(1):16052ADSCrossRefPubMedPubMedCentral
7.
go back to reference Haenssle HA, Fink C, Schneiderbauer R et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Immune-Relat Pathol Response Criteria 29(8):1836–1842 Haenssle HA, Fink C, Schneiderbauer R et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Immune-Relat Pathol Response Criteria 29(8):1836–1842
8.
go back to reference He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. Proc. IEEE Int. Conf. Comput. Vis, ICCV He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. Proc. IEEE Int. Conf. Comput. Vis, ICCV
9.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, CVPRCrossRef He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, CVPRCrossRef
11.
go back to reference Kingma DP, Ba J (2017) Adam: a method for stochastic optimization Kingma DP, Ba J (2017) Adam: a method for stochastic optimization
12.
go back to reference Kocak B, Baessler B, Bakas S et al (2023) CheckList for evaluation of radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14(1):75CrossRefPubMedPubMedCentral Kocak B, Baessler B, Bakas S et al (2023) CheckList for evaluation of radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14(1):75CrossRefPubMedPubMedCentral
13.
go back to reference Laverde-Saad A, Jfri A, García R, Salgüero I, Martínez C, Cembrero H, Roustán G, Alfageme F (2022) Discriminative deep learning based benignity/malignancy diagnosis of dermatologic ultrasound skin lesions with pretrained artificial intelligence architecture. Skin Res Technol 28(1):35–39CrossRefPubMed Laverde-Saad A, Jfri A, García R, Salgüero I, Martínez C, Cembrero H, Roustán G, Alfageme F (2022) Discriminative deep learning based benignity/malignancy diagnosis of dermatologic ultrasound skin lesions with pretrained artificial intelligence architecture. Skin Res Technol 28(1):35–39CrossRefPubMed
14.
go back to reference Lemcke J, Stengel D, Stockhammer F, Güthoff C, Rohde V, Meier U (2016) Nationwide incidence of normal pressure hydrocephalus (NPH) assessed by insurance claim data in Germany. Open Neurol J 10(1):15–24CrossRefPubMedPubMedCentral Lemcke J, Stengel D, Stockhammer F, Güthoff C, Rohde V, Meier U (2016) Nationwide incidence of normal pressure hydrocephalus (NPH) assessed by insurance claim data in Germany. Open Neurol J 10(1):15–24CrossRefPubMedPubMedCentral
15.
go back to reference Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime A-C (2010) Programmable CSF shunt valves: radiographic identification and interpretation. Am J Neuroradiol 31(7):1343CrossRefPubMedPubMedCentral Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime A-C (2010) Programmable CSF shunt valves: radiographic identification and interpretation. Am J Neuroradiol 31(7):1343CrossRefPubMedPubMedCentral
16.
go back to reference Mascagni P, Vardazaryan A, Alapatt D et al (2022) Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann, Surg, p 275 Mascagni P, Vardazaryan A, Alapatt D et al (2022) Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann, Surg, p 275
17.
go back to reference Mongan J, Moy L, Kahn CE (2020) Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2(2):e200029CrossRefPubMedPubMedCentral Mongan J, Moy L, Kahn CE (2020) Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2(2):e200029CrossRefPubMedPubMedCentral
18.
go back to reference Nishida N, Yamakawa M, Shiina T et al (2022) Artificial intelligence (AI) models for the ultrasonographic diagnosis of liver tumors and comparison of diagnostic accuracies between AI and human experts. J Gastroenterol 57(4):309–321CrossRefPubMedPubMedCentral Nishida N, Yamakawa M, Shiina T et al (2022) Artificial intelligence (AI) models for the ultrasonographic diagnosis of liver tumors and comparison of diagnostic accuracies between AI and human experts. J Gastroenterol 57(4):309–321CrossRefPubMedPubMedCentral
20.
go back to reference Sujit SJ, Bonfante E, Aein A, Coronado I, Riascos-Castaneda R, Giancardo L (2021) Deep learning enabled brain shunt valve identification using mobile phones. Comput Methods Programs Biomed 210:106356CrossRefPubMedPubMedCentral Sujit SJ, Bonfante E, Aein A, Coronado I, Riascos-Castaneda R, Giancardo L (2021) Deep learning enabled brain shunt valve identification using mobile phones. Comput Methods Programs Biomed 210:106356CrossRefPubMedPubMedCentral
21.
go back to reference Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, CVPRCrossRef Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. Proc. IEEE Conf. Comput. Vis. Pattern Recognit, CVPRCrossRef
Metadata
Title
Applied deep learning in neurosurgery: identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients
Authors
Thomas Rhomberg
Felipe Trivik-Barrientos
Arsany Hakim
Andreas Raabe
Michael Murek
Publication date
01-12-2024
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 1/2024
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-024-05940-3

Other articles of this Issue 1/2024

Acta Neurochirurgica 1/2024 Go to the issue