Skip to main content
Top
Published in: Systematic Reviews 1/2018

Open Access 01-12-2018 | Protocol

CSF and blood biomarkers in amyotrophic lateral sclerosis: protocol for a systematic review and meta-analysis

Authors: Elmira Agah, Fatemeh Saleh, Hossein Sanjari Moghaddam, Amene Saghazadeh, Abbas Tafakhori, Nima Rezaei

Published in: Systematic Reviews | Issue 1/2018

Login to get access

Abstract

Background

Amyotrophic lateral sclerosis (ALS) is a highly progressive and debilitating neurodegenerative disease, which usually leads to the death of affected individuals within a few years after the onset of symptoms. ALS is currently incurable and very little is known about its pathophysiology. Finding validated biomarkers will help us to advance our understanding of ALS etiology and find better strategies for early diagnosis and management of the disease. The main aim of the present systematic review is to evaluate the concentration of 11 frequently reported biomarkers for ALS in peripheral blood and CSF of patients diagnosed with ALS compared with controls.

Methods

This systematic review protocol has been established according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol (PRISMA-P) 2015 guideline. We will include all types of observational studies with human subjects that investigated the concentrations of intended biomarkers (amyloid beta (Aβ-42), tau and phosphorylated tau (p-Tau), neurofilaments, S100β, cystatin C, progranulin (PGRN), glial fibrillary acidic protein (GFAP), monocyte chemoattractant protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), TAR DNA-binding protein-43 (TDP43), YKL-40, and CHIT1 in CSF or peripheral blood of ALS patients for initial assessment. Also, we will include case series with a minimum of 10 cases and clinical trials which have measured baseline biomarker levels. Case studies, case reports, reviews, letters, and animal and in vitro studies will be excluded. Multiple electronic databases including Cochrane Library, MEDLINE (PubMed), ISI Web of Science, and EMBASE will be searched to find all eligible articles published since 1980. No language restriction will be applied. All titles and abstracts retrieved by searching information sources will be evaluated independently by two authors against the eligibility criteria. The following information will be extracted from each included study by two independent authors: bibliographic details (first author, study title, year of publication, country), demographics and clinical information (number of patients and controls, type of ALS and controls, study design, age, gender, specimen, biomarkers levels, ALS functional rating scale Revised (ALSFRS-R), duration of disease), and measurements (method, value type, biomarkers levels). We will use the extracted mean and standard deviation (SD) of biomarkers concentrations to calculate the standardized mean difference (SMD) and 95% confidence intervals (CI). The primary outcome measures are the mean difference of biomarker levels between ALS patients and controls, different types of ALS, and ALS patients with genetic mutations.

Discussion

We will systematically review the literature and analyze studies of biomarker level in CSF and peripheral blood of patients with ALS and controls. The results will help us to identify biomarkers with possible diagnostic and prognostic value.

Systematic review registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Pupillo E, Messina P, Logroscino G, Beghi E. Long-term survival in amyotrophic lateral sclerosis: a population-based study. Ann Neurol. 2014;75:287–97.CrossRef Pupillo E, Messina P, Logroscino G, Beghi E. Long-term survival in amyotrophic lateral sclerosis: a population-based study. Ann Neurol. 2014;75:287–97.CrossRef
2.
go back to reference Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41:118–30.CrossRef Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41:118–30.CrossRef
3.
go back to reference Marin B, Boumediene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, Copetti M, Preux PM, Beghi E. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2017;46:57–74.PubMed Marin B, Boumediene F, Logroscino G, Couratier P, Babron MC, Leutenegger AL, Copetti M, Preux PM, Beghi E. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2017;46:57–74.PubMed
4.
go back to reference Arthur KC, Calvo A, Price TR, Geiger JT, Chio A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016;7:12408.CrossRef Arthur KC, Calvo A, Price TR, Geiger JT, Chio A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016;7:12408.CrossRef
5.
go back to reference Gladman M, Zinman L. The economic impact of amyotrophic lateral sclerosis: a systematic review. Expert Rev Pharmacoecon Outcomes Res. 2015;15:439–50.CrossRef Gladman M, Zinman L. The economic impact of amyotrophic lateral sclerosis: a systematic review. Expert Rev Pharmacoecon Outcomes Res. 2015;15:439–50.CrossRef
6.
go back to reference Alonso A, Logroscino G, Jick SS, Hernan MA. Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur J Neurol. 2009;16:745–51.CrossRef Alonso A, Logroscino G, Jick SS, Hernan MA. Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur J Neurol. 2009;16:745–51.CrossRef
7.
go back to reference McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.CrossRef McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.CrossRef
8.
go back to reference Gordon PH. Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging and Disease. 2013;4:295–310.CrossRef Gordon PH. Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging and Disease. 2013;4:295–310.CrossRef
9.
go back to reference Marin B, Logroscino G, Boumediene F, Labrunie A, Couratier P, Babron MC, Leutenegger AL, Preux PM, Beghi E. Clinical and demographic factors and outcome of amyotrophic lateral sclerosis in relation to population ancestral origin. Eur J Epidemiol. 2016;31:229–45.CrossRef Marin B, Logroscino G, Boumediene F, Labrunie A, Couratier P, Babron MC, Leutenegger AL, Preux PM, Beghi E. Clinical and demographic factors and outcome of amyotrophic lateral sclerosis in relation to population ancestral origin. Eur J Epidemiol. 2016;31:229–45.CrossRef
10.
go back to reference Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, McLaughlin R, Hardiman O. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82:623–7.CrossRef Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, McLaughlin R, Hardiman O. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82:623–7.CrossRef
11.
go back to reference Ticozzi N, Tiloca C, Morelli C, Colombrita C, Poletti B, Doretti A, Maderna L, Messina S, Ratti A, Silani V. Genetics of familial amyotrophic lateral sclerosis. Arch Ital Biol. 2011;149:65–82.PubMed Ticozzi N, Tiloca C, Morelli C, Colombrita C, Poletti B, Doretti A, Maderna L, Messina S, Ratti A, Silani V. Genetics of familial amyotrophic lateral sclerosis. Arch Ital Biol. 2011;149:65–82.PubMed
12.
go back to reference Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10:661–70.CrossRef Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10:661–70.CrossRef
13.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.CrossRef Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.CrossRef
14.
go back to reference Paganoni S, Macklin EA, Lee A, Murphy A, Chang J, Zipf A, Cudkowicz M, Atassi N. Diagnostic timelines and delays in diagnosing amyotrophic lateral sclerosis (ALS). Amyotrophic lateral sclerosis & frontotemporal degeneration. 2014;15:453–6.CrossRef Paganoni S, Macklin EA, Lee A, Murphy A, Chang J, Zipf A, Cudkowicz M, Atassi N. Diagnostic timelines and delays in diagnosing amyotrophic lateral sclerosis (ALS). Amyotrophic lateral sclerosis & frontotemporal degeneration. 2014;15:453–6.CrossRef
15.
go back to reference Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx. 2004;1:189–95.CrossRef Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx. 2004;1:189–95.CrossRef
16.
go back to reference Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. London: The Cochrane Collaboration; 2011. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. London: The Cochrane Collaboration; 2011.
17.
go back to reference Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, Matullo G, Phillips DH, Schoket B, Stromberg U, et al. STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME): an extension of the STROBE statement. Eur J Clin Investig. 2012;42:1–16.CrossRef Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, Matullo G, Phillips DH, Schoket B, Stromberg U, et al. STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME): an extension of the STROBE statement. Eur J Clin Investig. 2012;42:1–16.CrossRef
18.
go back to reference Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.CrossRef Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.CrossRef
19.
go back to reference Beeldman E, Raaphorst J, Klein Twennaar M, de Visser M, Schmand BA, de Haan RJ. The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry. 2016;87:611–9.CrossRef Beeldman E, Raaphorst J, Klein Twennaar M, de Visser M, Schmand BA, de Haan RJ. The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry. 2016;87:611–9.CrossRef
20.
go back to reference Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315:629–34.CrossRef Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315:629–34.CrossRef
Metadata
Title
CSF and blood biomarkers in amyotrophic lateral sclerosis: protocol for a systematic review and meta-analysis
Authors
Elmira Agah
Fatemeh Saleh
Hossein Sanjari Moghaddam
Amene Saghazadeh
Abbas Tafakhori
Nima Rezaei
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2018
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-018-0913-4

Other articles of this Issue 1/2018

Systematic Reviews 1/2018 Go to the issue