Skip to main content
Top
Published in: European Radiology 2/2014

01-02-2014 | Experimental

Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens

Authors: Masami Ando, Naoki Sunaguchi, Yanlin Wu, Synho Do, Yongjin Sung, Abner Louissaint, Tetsuya Yuasa, Shu Ichihara, Rajiv Gupta

Published in: European Radiology | Issue 2/2014

Login to get access

Abstract

Objectives

We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens.

Methods

The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA. For the light source, we used the beamline BL14C on a 2.5-GeV storage ring in the KEK Photon Factory, Tsukuba, Japan.

Results

In the eye specimen, phase contrast images from XDFI were able to discriminate soft-tissue structures, such as the iris, separated by aqueous humour on both sides, which have nearly equal absorption. Superiority of XDFI in imaging soft tissue was further demonstrated with a diseased iliac artery containing atherosclerotic plaque and breast samples with benign and malignant tumours. XDFI on breast tumours discriminated between the normal and diseased terminal duct lobular unit and between invasive and in-situ cancer.

Conclusions

X-ray phase, as detected by XDFI, has superior contrast over absorption for soft tissue processes such as atherosclerotic plaque and breast cancer.

Key points

• X-ray dark field imaging (XDFI) can dramatically increase sensitivity of phase detection.
XDFI can provide enhanced soft tissue discrimination.
With XDFI, abnormal anatomy can be visualised with high spatial/contrast resolution.
Literature
1.
go back to reference Webb S, Flower MA (2012) Webb's physics of medical imaging. CRC Press, London Webb S, Flower MA (2012) Webb's physics of medical imaging. CRC Press, London
2.
go back to reference Intl Commission on Radiation (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU Report 46 Intl Commission on Radiation (1992) Photon, electron, proton and neutron interaction data for body tissues. ICRU Report 46
3.
go back to reference Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography1. J Am Coll Cardiol 37:1430–1435PubMedCrossRef Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography1. J Am Coll Cardiol 37:1430–1435PubMedCrossRef
4.
go back to reference Chu B, Kampschulte A, Ferguson MS et al (2004) Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 35:1079–1084PubMedCrossRef Chu B, Kampschulte A, Ferguson MS et al (2004) Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 35:1079–1084PubMedCrossRef
5.
go back to reference Goehde SC, Hunold P, Vogt FM et al (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. Am J Roentgenol 184:598–611CrossRef Goehde SC, Hunold P, Vogt FM et al (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. Am J Roentgenol 184:598–611CrossRef
6.
7.
go back to reference Momose A (1995) Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl Instrum Methods A 352:622–628CrossRef Momose A (1995) Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl Instrum Methods A 352:622–628CrossRef
8.
go back to reference Chapman D, Thomlinson W, Johnston R et al (1997) Diffraction enhanced x-ray imaging. Phys med biol 42:2015PubMedCrossRef Chapman D, Thomlinson W, Johnston R et al (1997) Diffraction enhanced x-ray imaging. Phys med biol 42:2015PubMedCrossRef
9.
go back to reference Wilkins S, Gureyev T, Gao D, Pogany A, Stevenson A (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338CrossRef Wilkins S, Gureyev T, Gao D, Pogany A, Stevenson A (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338CrossRef
10.
go back to reference David C, Nohammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289CrossRef David C, Nohammer B, Solak HH, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289CrossRef
11.
12.
go back to reference Olivo A, Arfelli F, Cantatore G et al (2001) An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Med phys 28:1610PubMedCrossRef Olivo A, Arfelli F, Cantatore G et al (2001) An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Med phys 28:1610PubMedCrossRef
13.
go back to reference Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y (2003) Demonstration of X-ray Talbot interferometry. Jpn J Appl Phys 42:L866–L868CrossRef Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y (2003) Demonstration of X-ray Talbot interferometry. Jpn J Appl Phys 42:L866–L868CrossRef
14.
go back to reference Pfeiffer F, Bech M, Bunk O et al (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137PubMedCrossRef Pfeiffer F, Bech M, Bunk O et al (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137PubMedCrossRef
15.
go back to reference Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRef Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRef
16.
go back to reference Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58:R1PubMedCrossRef Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58:R1PubMedCrossRef
17.
go back to reference Keyriläinen J, Bravin A, Fernández M, Tenhunen M, Virkkunen P, Suortti P (2010) Phase-contrast X-ray imaging of breast. Acta Radiol 51:866–884PubMedCrossRef Keyriläinen J, Bravin A, Fernández M, Tenhunen M, Virkkunen P, Suortti P (2010) Phase-contrast X-ray imaging of breast. Acta Radiol 51:866–884PubMedCrossRef
18.
go back to reference Wu Y, Hyodo K, Sunaguchi N, Yuasa T, Ando M (2013) Development of high sensitivity X-ray multiple-times-diffraction enhanced imaging (M-DEI) optics(ed)^(eds) J Phys Conf Ser. IOP Publishing, pp 192008 Wu Y, Hyodo K, Sunaguchi N, Yuasa T, Ando M (2013) Development of high sensitivity X-ray multiple-times-diffraction enhanced imaging (M-DEI) optics(ed)^(eds) J Phys Conf Ser. IOP Publishing, pp 192008
19.
go back to reference Takagi S (1962) Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr 15:1311–1312CrossRef Takagi S (1962) Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr 15:1311–1312CrossRef
20.
go back to reference Takagi S (1969) A dynamical theory of diffraction for a distorted crystal. J Phys Soc Jpn 26:1239–1253CrossRef Takagi S (1969) A dynamical theory of diffraction for a distorted crystal. J Phys Soc Jpn 26:1239–1253CrossRef
21.
go back to reference Taupin D (1964) Dynamic theory of x-ray diffraction in crystals. Bull Soc Fr Mineral Crystallogr 87 Taupin D (1964) Dynamic theory of x-ray diffraction in crystals. Bull Soc Fr Mineral Crystallogr 87
22.
go back to reference Ando M, Maksimenko A, Sugiyama H, Pattanasiriwisawa W, Hyodo K, Uyama C (2002) Simple X-ray dark-and bright-field imaging using achromatic Laue optics. Jpn J Appl Phys 41:L1016–L1018CrossRef Ando M, Maksimenko A, Sugiyama H, Pattanasiriwisawa W, Hyodo K, Uyama C (2002) Simple X-ray dark-and bright-field imaging using achromatic Laue optics. Jpn J Appl Phys 41:L1016–L1018CrossRef
23.
go back to reference Kato N (1961) A theoretical study of pendellosung fringes. I. General considerations. Acta Crystallogr 14:526–532CrossRef Kato N (1961) A theoretical study of pendellosung fringes. I. General considerations. Acta Crystallogr 14:526–532CrossRef
24.
go back to reference Kato N (1961) A theoretical study of pendellosung fringes. II. Detailed discussion based upon a spherical wave theory. Acta Crystallogr 14:627–636CrossRef Kato N (1961) A theoretical study of pendellosung fringes. II. Detailed discussion based upon a spherical wave theory. Acta Crystallogr 14:627–636CrossRef
25.
26.
go back to reference Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pur Appl Math 59:1207–1223CrossRef Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pur Appl Math 59:1207–1223CrossRef
27.
go back to reference Chapman D, Thomlinson W, Johnston R et al (1999) Diffraction enhanced x-ray imaging. Phys med biol 42:2015CrossRef Chapman D, Thomlinson W, Johnston R et al (1999) Diffraction enhanced x-ray imaging. Phys med biol 42:2015CrossRef
28.
go back to reference Dilmanian F, Zhong Z, Ren B et al (2000) Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method. Phys med biol 45:933PubMedCrossRef Dilmanian F, Zhong Z, Ren B et al (2000) Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method. Phys med biol 45:933PubMedCrossRef
29.
go back to reference Maksimenko A, Ando M, Hiroshi S, Yuasa T (2005) Computed tomographic reconstruction based on x-ray refraction contrast. Appl phys lett 86:124105-124105-124103 Maksimenko A, Ando M, Hiroshi S, Yuasa T (2005) Computed tomographic reconstruction based on x-ray refraction contrast. Appl phys lett 86:124105-124105-124103
30.
go back to reference Huang ZF, Kang KJ, Li Z, et al. (2006) Direct computed tomographic reconstruction for directional-derivative projections of computed tomography of diffraction enhanced imaging. Appl phys lett 89:041124-041124-041123 Huang ZF, Kang KJ, Li Z, et al. (2006) Direct computed tomographic reconstruction for directional-derivative projections of computed tomography of diffraction enhanced imaging. Appl phys lett 89:041124-041124-041123
31.
go back to reference Sunaguchi N, Yuasa T, Huo Q, Ando M (2011) Convolution reconstruction algorithm for refraction-contrast computed tomography using a Laue-case analyzer for dark-field imaging. Opt lett 36:391–393PubMedCrossRef Sunaguchi N, Yuasa T, Huo Q, Ando M (2011) Convolution reconstruction algorithm for refraction-contrast computed tomography using a Laue-case analyzer for dark-field imaging. Opt lett 36:391–393PubMedCrossRef
32.
go back to reference Sunaguchi N, Yuasa T, Huo Q, Ichihara S, Ando M (2010) X-ray refraction-contrast computed tomography images using dark-field imaging optics. Appl phys lett 97:153701-153701-153703 Sunaguchi N, Yuasa T, Huo Q, Ichihara S, Ando M (2010) X-ray refraction-contrast computed tomography images using dark-field imaging optics. Appl phys lett 97:153701-153701-153703
33.
go back to reference Ichihara S, Ando M, Maksimenko A et al (2008) 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT. Virchows Arch 452:41–47PubMedCrossRef Ichihara S, Ando M, Maksimenko A et al (2008) 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT. Virchows Arch 452:41–47PubMedCrossRef
Metadata
Title
Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens
Authors
Masami Ando
Naoki Sunaguchi
Yanlin Wu
Synho Do
Yongjin Sung
Abner Louissaint
Tetsuya Yuasa
Shu Ichihara
Rajiv Gupta
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 2/2014
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-013-3021-9

Other articles of this Issue 2/2014

European Radiology 2/2014 Go to the issue