Skip to main content
Top
Published in: Molecular Cancer 1/2024

Open Access 01-12-2024 | Review

Crosstalk between metabolism and cell death in tumorigenesis

Authors: Shichao Yang, Caden Hu, Xiaomei Chen, Yi Tang, Juanjuan Li, Hanqing Yang, Yi Yang, Binwu Ying, Xue Xiao, Shang‑Ze Li, Li Gu, Yahui Zhu

Published in: Molecular Cancer | Issue 1/2024

Login to get access

Abstract

It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Appendix
Available only for authorised users
Literature
6.
go back to reference DelNero P et al. Cancer metabolism gets physical. Science Translational Medicine. 2018;10.1126/scitranslmed.aaq1011. DelNero P et al. Cancer metabolism gets physical. Science Translational Medicine. 2018;10.1126/scitranslmed.aaq1011.
8.
go back to reference Green DR et al. Cell biology. Metabolic control of cell death. Science. 2014;10.1126/science.1250256. Green DR et al. Cell biology. Metabolic control of cell death. Science. 2014;10.1126/science.1250256.
21.
go back to reference Sun C et al. Regulation and Function of the PD-L1 Checkpoint. Immunity. 2018;10.1016/j.immuni.2018.03.014. Sun C et al. Regulation and Function of the PD-L1 Checkpoint. Immunity. 2018;10.1016/j.immuni.2018.03.014.
24.
go back to reference Li CW et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;10.1038/ncomms12632. Li CW et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;10.1038/ncomms12632.
25.
go back to reference Jiang X et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;10.1186/s12943-018-0928-4. Jiang X et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;10.1186/s12943-018-0928-4.
26.
go back to reference Cerezo M et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med. 2018;10.1038/s41591-018-0217-1. Cerezo M et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med. 2018;10.1038/s41591-018-0217-1.
27.
go back to reference Casey SC et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;10.1016/j.semcancer.2015.02.007. Casey SC et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;10.1016/j.semcancer.2015.02.007.
28.
go back to reference Wei G et al. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Lett. 2021;10.1016/j.canlet.2021.04.021. Wei G et al. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Lett. 2021;10.1016/j.canlet.2021.04.021.
31.
go back to reference Sayers TJ. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 2011;10.1007/s00262-011-1008-4. Sayers TJ. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 2011;10.1007/s00262-011-1008-4.
33.
go back to reference Zhang Z et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;10.1038/s41467-021-26180-4. Zhang Z et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;10.1038/s41467-021-26180-4.
34.
go back to reference Jensen PJ et al. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem. 2006;10.1074/jbc.M601881200. Jensen PJ et al. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem. 2006;10.1074/jbc.M601881200.
35.
go back to reference Wu XL et al. Effects of Glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF-beta/PI3K-AKT-mTOR signaling pathway. J Cell Biochem. 2018;10.1002/jcb.26399. Wu XL et al. Effects of Glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF-beta/PI3K-AKT-mTOR signaling pathway. J Cell Biochem. 2018;10.1002/jcb.26399.
36.
go back to reference Chen M et al. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol. 2022;10.1038/s41556-022-00949-1. Chen M et al. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol. 2022;10.1038/s41556-022-00949-1.
37.
go back to reference Bensaad K et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;10.1016/j.cell.2006.05.036. Bensaad K et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;10.1016/j.cell.2006.05.036.
38.
go back to reference Granchi C. ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem. 2018;10.1016/j.ejmech.2018.09.001. Granchi C. ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem. 2018;10.1016/j.ejmech.2018.09.001.
39.
go back to reference Keenan MM et al. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via alpha-ketoglutarate. PLoS Genet. 2015;10.1371/journal.pgen.1005599. Keenan MM et al. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via alpha-ketoglutarate. PLoS Genet. 2015;10.1371/journal.pgen.1005599.
40.
go back to reference Gu L et al. The IKKbeta-USP30-ACLY Axis Controls Lipogenesis and Tumorigenesis. Hepatology. 2021;10.1002/hep.31249. Gu L et al. The IKKbeta-USP30-ACLY Axis Controls Lipogenesis and Tumorigenesis. Hepatology. 2021;10.1002/hep.31249.
41.
go back to reference Icard P et al. ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett. 2020;10.1016/j.canlet.2019.12.010. Icard P et al. ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett. 2020;10.1016/j.canlet.2019.12.010.
42.
go back to reference Kiesel VA et al. Pyruvate carboxylase and cancer progression. Cancer Metab. 2021;10.1186/s40170-021-00256-7. Kiesel VA et al. Pyruvate carboxylase and cancer progression. Cancer Metab. 2021;10.1186/s40170-021-00256-7.
43.
go back to reference Bonfili L et al. Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation. FEBS J. 2017;10.1111/febs.14081. Bonfili L et al. Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation. FEBS J. 2017;10.1111/febs.14081.
44.
go back to reference Uriarte M et al. Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis. Nat Commun. 2021;10.1038/s41467-021-27306-4. Uriarte M et al. Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis. Nat Commun. 2021;10.1038/s41467-021-27306-4.
45.
go back to reference Fumarola C et al. Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ. 2001;10.1038/sj.cdd.4400902. Fumarola C et al. Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ. 2001;10.1038/sj.cdd.4400902.
46.
go back to reference Chen L, Cui H. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Int J Mol Sci 2015;10.3390/ijms160922830. Chen L, Cui H. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Int J Mol Sci 2015;10.3390/ijms160922830.
47.
go back to reference Jiang B et al. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol Cell. 2022;10.1016/j.molcel.2022.03.016. Jiang B et al. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol Cell. 2022;10.1016/j.molcel.2022.03.016.
48.
go back to reference Chalecka M et al. P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int J Mol Sci. 2021;10.3390/ijms222111763. Chalecka M et al. P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int J Mol Sci. 2021;10.3390/ijms222111763.
49.
go back to reference Huynh TYL et al. Metformin Treatment or PRODH/POX-Knock out Similarly Induces Apoptosis by Reprograming of Amino Acid Metabolism, TCA, Urea Cycle and Pentose Phosphate Pathway in MCF-7 Breast Cancer Cells. Biomolecules. 2021;10.3390/biom11121888. Huynh TYL et al. Metformin Treatment or PRODH/POX-Knock out Similarly Induces Apoptosis by Reprograming of Amino Acid Metabolism, TCA, Urea Cycle and Pentose Phosphate Pathway in MCF-7 Breast Cancer Cells. Biomolecules. 2021;10.3390/biom11121888.
50.
go back to reference Markowicz-Piasecka M et al. Hemocompatible LAT1-inhibitor can induce apoptosis in cancer cells without affecting brain amino acid homeostasis. Apoptosis. 2020;10.1007/s10495-020-01603-7. Markowicz-Piasecka M et al. Hemocompatible LAT1-inhibitor can induce apoptosis in cancer cells without affecting brain amino acid homeostasis. Apoptosis. 2020;10.1007/s10495-020-01603-7.
51.
go back to reference Montaser A et al. L-type amino acid transporter 1 (LAT1)-utilizing efflux transporter inhibitors can improve the brain uptake and apoptosis-inducing effects of vinblastine in cancer cells. Int J Pharm. 2020;10.1016/j.ijpharm.2020.119585. Montaser A et al. L-type amino acid transporter 1 (LAT1)-utilizing efflux transporter inhibitors can improve the brain uptake and apoptosis-inducing effects of vinblastine in cancer cells. Int J Pharm. 2020;10.1016/j.ijpharm.2020.119585.
52.
go back to reference Fu YM et al. Selective amino acid restriction targets mitochondria to induce apoptosis of androgen-independent prostate cancer cells. J Cell Physiol. 2006;10.1002/jcp.20766. Fu YM et al. Selective amino acid restriction targets mitochondria to induce apoptosis of androgen-independent prostate cancer cells. J Cell Physiol. 2006;10.1002/jcp.20766.
53.
go back to reference Dyntar D et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes. 2001;10.2337/diabetes.50.9.2105. Dyntar D et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes. 2001;10.2337/diabetes.50.9.2105.
54.
go back to reference Shen X et al. The effect of FFAR1 on pioglitazone-mediated attenuation of palmitic acid-induced oxidative stress and apoptosis in betaTC6 cells. Metabolism. 2014;10.1016/j.metabol.2013.11.003. Shen X et al. The effect of FFAR1 on pioglitazone-mediated attenuation of palmitic acid-induced oxidative stress and apoptosis in betaTC6 cells. Metabolism. 2014;10.1016/j.metabol.2013.11.003.
55.
go back to reference Chen L et al. G protein-coupled receptor 39 activation alleviates oxidized low-density lipoprotein-induced macrophage inflammatory response, lipid accumulation and apoptosis by inducing A20 expression. Bioengineered. 2021;10.1080/21655979.2021.1952917. Chen L et al. G protein-coupled receptor 39 activation alleviates oxidized low-density lipoprotein-induced macrophage inflammatory response, lipid accumulation and apoptosis by inducing A20 expression. Bioengineered. 2021;10.1080/21655979.2021.1952917.
56.
go back to reference Wei Q et al. MiR-345-3p attenuates apoptosis and inflammation caused by oxidized low-density lipoprotein by targeting TRAF6 via TAK1/p38/NF-kB signaling in endothelial cells. Life Sci. 2020;10.1016/j.lfs.2019.117142. Wei Q et al. MiR-345-3p attenuates apoptosis and inflammation caused by oxidized low-density lipoprotein by targeting TRAF6 via TAK1/p38/NF-kB signaling in endothelial cells. Life Sci. 2020;10.1016/j.lfs.2019.117142.
57.
go back to reference Gu L et al. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene. 2020;10.1038/s41388-020-1156-0. Gu L et al. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene. 2020;10.1038/s41388-020-1156-0.
58.
go back to reference Hsieh PF, Cell suspension culture extract of Eriobotrya japonica attenuates growth and induces apoptosis in prostate cancer cells via targeting SREBP-1/FASN-driven metabolism and AR., Phytomedicine et al. 2021;10.1016/j.phymed.2021.153806. Hsieh PF, Cell suspension culture extract of Eriobotrya japonica attenuates growth and induces apoptosis in prostate cancer cells via targeting SREBP-1/FASN-driven metabolism and AR., Phytomedicine et al. 2021;10.1016/j.phymed.2021.153806.
59.
go back to reference Subedi A et al. Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell. 2021;10.1016/j.stem.2021.06.004. Subedi A et al. Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell. 2021;10.1016/j.stem.2021.06.004.
60.
go back to reference Li YC et al. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;10.2353/ajpath.2006.050959. Li YC et al. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;10.2353/ajpath.2006.050959.
61.
go back to reference Balaban S et al. Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitate-induced apoptosis. Mol Oncol. 2018;10.1002/1878-0261.12368. Balaban S et al. Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitate-induced apoptosis. Mol Oncol. 2018;10.1002/1878-0261.12368.
62.
go back to reference Matthews GM et al. Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism. Chemotherapy. 2012;10.1159/000335672. Matthews GM et al. Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism. Chemotherapy. 2012;10.1159/000335672.
63.
go back to reference Judge A, Dodd MS, Metabolism. Essays Biochem. 2020;10:1042EBC20190041. Judge A, Dodd MS, Metabolism. Essays Biochem. 2020;10:1042EBC20190041.
64.
go back to reference Wang R et al. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur J Med Chem. 2020;10.1016/j.ejmech.2020.112737. Wang R et al. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur J Med Chem. 2020;10.1016/j.ejmech.2020.112737.
65.
go back to reference Ryu H et al. The small molecule AU14022 promotes colorectal cancer cell death via p53-mediated G2/M-phase arrest and mitochondria-mediated apoptosis. J Cell Physiol. 2018;10.1002/jcp.26234. Ryu H et al. The small molecule AU14022 promotes colorectal cancer cell death via p53-mediated G2/M-phase arrest and mitochondria-mediated apoptosis. J Cell Physiol. 2018;10.1002/jcp.26234.
66.
go back to reference Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol 2015;10.1101/cshperspect.a006080. Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol 2015;10.1101/cshperspect.a006080.
67.
go back to reference Samaratunga H et al. Granular necrosis: a distinctive form of cell death in malignant tumours. Pathology. 2020;10.1016/j.pathol.2020.06.002. Samaratunga H et al. Granular necrosis: a distinctive form of cell death in malignant tumours. Pathology. 2020;10.1016/j.pathol.2020.06.002.
68.
go back to reference Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;10.1038/nrc1478. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;10.1038/nrc1478.
69.
go back to reference Leon-Annicchiarico CL et al. ATF4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2-deoxyglucose in the same cells. FEBS J. 2015;10.1111/febs.13369. Leon-Annicchiarico CL et al. ATF4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2-deoxyglucose in the same cells. FEBS J. 2015;10.1111/febs.13369.
70.
go back to reference Tian X et al. P53-independent partial restoration of the p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation by ERK1/2 and CDK9. Neoplasia. 2021;10.1016/j.neo.2021.01.004. Tian X et al. P53-independent partial restoration of the p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation by ERK1/2 and CDK9. Neoplasia. 2021;10.1016/j.neo.2021.01.004.
71.
go back to reference Horiguchi M et al. Rhythmic control of the ARF-MDM2 pathway by ATF4 underlies circadian accumulation of p53 in malignant cells. Cancer Res. 2013;10.1158/0008-5472.CAN-12-2492. Horiguchi M et al. Rhythmic control of the ARF-MDM2 pathway by ATF4 underlies circadian accumulation of p53 in malignant cells. Cancer Res. 2013;10.1158/0008-5472.CAN-12-2492.
72.
go back to reference Khan MR et al. The p53-inducible long noncoding RNA TRINGS protects cancer cells from necrosis under glucose starvation. EMBO J. 2017;10.15252/embj.201696239. Khan MR et al. The p53-inducible long noncoding RNA TRINGS protects cancer cells from necrosis under glucose starvation. EMBO J. 2017;10.15252/embj.201696239.
73.
go back to reference Shao D et al. CHOP mediates XBP1S-induced renal mesangial cell necrosis following high glucose treatment. Eur J Pharmacol. 2015;10.1016/j.ejphar.2015.03.069. Shao D et al. CHOP mediates XBP1S-induced renal mesangial cell necrosis following high glucose treatment. Eur J Pharmacol. 2015;10.1016/j.ejphar.2015.03.069.
74.
go back to reference Durham KK et al. High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2. Biochem J. 2018;10.1042/BCJ20170703. Durham KK et al. High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2. Biochem J. 2018;10.1042/BCJ20170703.
75.
go back to reference Hlatky L et al. Joint oxygen-glucose deprivation as the cause of necrosis in a tumor analog. J Cell Physiol. 1988;10.1002/jcp.1041340202. Hlatky L et al. Joint oxygen-glucose deprivation as the cause of necrosis in a tumor analog. J Cell Physiol. 1988;10.1002/jcp.1041340202.
76.
go back to reference Harwood SM et al. High glucose initiates calpain-induced necrosis before apoptosis in LLC-PK1 cells. Kidney International. 2007;10.1038/sj.ki.5002106. Harwood SM et al. High glucose initiates calpain-induced necrosis before apoptosis in LLC-PK1 cells. Kidney International. 2007;10.1038/sj.ki.5002106.
77.
go back to reference McGinn S et al. High glucose and endothelial cell growth: novel effects independent of autocrine TGF-β1 and hyperosmolarity. American Journal of Physiology-Cell Physiology. 2003;10.1152/ajpcell.00466.2002. McGinn S et al. High glucose and endothelial cell growth: novel effects independent of autocrine TGF-β1 and hyperosmolarity. American Journal of Physiology-Cell Physiology. 2003;10.1152/ajpcell.00466.2002.
78.
go back to reference Papo N et al. Suppression of human prostate tumor growth in mice by a cytolytic D-, L-amino Acid Peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res. 2004;10.1158/0008-5472.CAN-04-1438. Papo N et al. Suppression of human prostate tumor growth in mice by a cytolytic D-, L-amino Acid Peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res. 2004;10.1158/0008-5472.CAN-04-1438.
79.
go back to reference Gramaglia D et al. Apoptosis to necrosis switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a BCL-X(L)- and PKB/AKT-independent fashion. Cell Death Differ. 2004;10.1038/sj.cdd.4401326. Gramaglia D et al. Apoptosis to necrosis switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a BCL-X(L)- and PKB/AKT-independent fashion. Cell Death Differ. 2004;10.1038/sj.cdd.4401326.
80.
go back to reference Lim S-C et al. Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. International Journal of Molecular Medicine. 2007;10.3892/ijmm.20.2.187. Lim S-C et al. Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. International Journal of Molecular Medicine. 2007;10.3892/ijmm.20.2.187.
81.
go back to reference Kang. Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. International Journal of Oncology. 2009;10.3892/ijo_00000482. Kang. Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. International Journal of Oncology. 2009;10.3892/ijo_00000482.
82.
go back to reference Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;10.1101/gad.1376506. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;10.1101/gad.1376506.
83.
go back to reference Criddle DN et al. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ. 2007;10.1038/sj.cdd.4402150. Criddle DN et al. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ. 2007;10.1038/sj.cdd.4402150.
84.
go back to reference Wallach D et al. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science. 2016;10.1126/science.aaf2154. Wallach D et al. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science. 2016;10.1126/science.aaf2154.
85.
go back to reference Kaczmarek A et al. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;10.1016/j.immuni.2013.02.003. Kaczmarek A et al. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;10.1016/j.immuni.2013.02.003.
86.
go back to reference Zhang T et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature. 2022;10.1038/s41586-022-04753-7. Zhang T et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature. 2022;10.1038/s41586-022-04753-7.
87.
go back to reference Wang Y et al. Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway. J Exp Clin Cancer Res. 2019;10.1186/s13046-019-1423-5. Wang Y et al. Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway. J Exp Clin Cancer Res. 2019;10.1186/s13046-019-1423-5.
88.
go back to reference Mishra SK et al. Upregulation of human glycolipid transfer protein (GLTP) induces necroptosis in colon carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;10.1016/j.bbalip.2018.11.002. Mishra SK et al. Upregulation of human glycolipid transfer protein (GLTP) induces necroptosis in colon carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;10.1016/j.bbalip.2018.11.002.
89.
go back to reference Baik JY et al. ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer. Nat Commun. 2021;10.1038/s41467-021-23004-3. Baik JY et al. ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer. Nat Commun. 2021;10.1038/s41467-021-23004-3.
90.
go back to reference Newell M et al. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem. 2022;10.1016/j.jnutbio.2022.109018. Newell M et al. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem. 2022;10.1016/j.jnutbio.2022.109018.
91.
go back to reference Pradhan AJ et al. Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chem Biol. 2021;10.1016/j.chembiol.2021.03.012. Pradhan AJ et al. Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chem Biol. 2021;10.1016/j.chembiol.2021.03.012.
92.
go back to reference Xie X et al. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol. 2015;10.1111/bph.13184. Xie X et al. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol. 2015;10.1111/bph.13184.
93.
go back to reference Lee SB et al. The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol. 2019;10.1038/s41556-019-0356-8. Lee SB et al. The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol. 2019;10.1038/s41556-019-0356-8.
94.
go back to reference Zhang DW et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;10.1126/science.1172308. Zhang DW et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;10.1126/science.1172308.
95.
go back to reference Ying L et al. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol (Oxf). 2021;10.1111/apha.13541. Ying L et al. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol (Oxf). 2021;10.1111/apha.13541.
96.
go back to reference Lin CC et al. RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence. Cell Death Differ. 2020;10.1038/s41418-020-0499-y. Lin CC et al. RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence. Cell Death Differ. 2020;10.1038/s41418-020-0499-y.
97.
go back to reference Lee SY et al. Casein kinase-1gamma1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3. Cell Death Dis. 2019;10.1038/s41419-019-2146-4. Lee SY et al. Casein kinase-1gamma1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3. Cell Death Dis. 2019;10.1038/s41419-019-2146-4.
98.
go back to reference Dixon SJ et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;10.1016/j.cell.2012.03.042. Dixon SJ et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;10.1016/j.cell.2012.03.042.
99.
go back to reference Parker JL et al. Molecular basis for redox control by the human cystine/glutamate antiporter system xc(). Nat Commun. 2021;10.1038/s41467-021-27414-1. Parker JL et al. Molecular basis for redox control by the human cystine/glutamate antiporter system xc(). Nat Commun. 2021;10.1038/s41467-021-27414-1.
100.
go back to reference Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020;10.1038/s41392-020-00216-5. Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020;10.1038/s41392-020-00216-5.
101.
go back to reference Liang D et al. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;10.1016/j.molcel.2022.03.022. Liang D et al. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;10.1016/j.molcel.2022.03.022.
102.
go back to reference Dierge E et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 2021;10.1016/j.cmet.2021.05.016. Dierge E et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 2021;10.1016/j.cmet.2021.05.016.
103.
go back to reference Ascenzi F et al. SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res. 2021;10.1186/s13046-021-02067-6. Ascenzi F et al. SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res. 2021;10.1186/s13046-021-02067-6.
104.
go back to reference Tesfay L et al. Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death. Cancer Res. 2019;10.1158/0008-5472.CAN-19-0369. Tesfay L et al. Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death. Cancer Res. 2019;10.1158/0008-5472.CAN-19-0369.
105.
go back to reference Ye Z et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;10.1016/j.redox.2020.101807. Ye Z et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;10.1016/j.redox.2020.101807.
106.
go back to reference Luis G et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021;10.1016/j.redox.2021.102006. Luis G et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021;10.1016/j.redox.2021.102006.
107.
go back to reference Wang C et al. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY). 2020;10.18632/aging.103598. Wang C et al. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY). 2020;10.18632/aging.103598.
108.
go back to reference Yi J et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A. 2020;10.1073/pnas.2017152117. Yi J et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A. 2020;10.1073/pnas.2017152117.
109.
go back to reference Xuan Y et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics. 2022;10.7150/thno.70194. Xuan Y et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics. 2022;10.7150/thno.70194.
110.
go back to reference Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab 2012;10.1016/j.cmet.2012.09.002. Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab 2012;10.1016/j.cmet.2012.09.002.
111.
go back to reference Hong X et al. The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discov. 2021;10.1158/2159–8290.CD-19-1500. Hong X et al. The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discov. 2021;10.1158/2159–8290.CD-19-1500.
112.
go back to reference Pawlak M et al. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;10.1016/j.jhep.2014.10.039. Pawlak M et al. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;10.1016/j.jhep.2014.10.039.
113.
go back to reference Bougarne N et al. Molecular Actions of PPARalpha in Lipid Metabolism and Inflammation. Endocr Rev. 2018;10.1210/er.2018-00064. Bougarne N et al. Molecular Actions of PPARalpha in Lipid Metabolism and Inflammation. Endocr Rev. 2018;10.1210/er.2018-00064.
114.
go back to reference Zhang N et al. N-glycosylation of CREBH improves lipid metabolism and attenuates lipotoxicity in NAFLD by modulating PPARalpha and SCD-1. FASEB J. 2020;10.1096/fj.202000836RR. Zhang N et al. N-glycosylation of CREBH improves lipid metabolism and attenuates lipotoxicity in NAFLD by modulating PPARalpha and SCD-1. FASEB J. 2020;10.1096/fj.202000836RR.
115.
go back to reference Venkatesh D et al. MDM2 and MDMX promote ferroptosis by PPARalpha-mediated lipid remodeling. Genes Dev. 2020;10.1101/gad.334219.119. Venkatesh D et al. MDM2 and MDMX promote ferroptosis by PPARalpha-mediated lipid remodeling. Genes Dev. 2020;10.1101/gad.334219.119.
116.
go back to reference Wu J et al. Downregulation of PPARalpha mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells. Int J Biol Sci. 2022;10.7150/ijbs.74675. Wu J et al. Downregulation of PPARalpha mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells. Int J Biol Sci. 2022;10.7150/ijbs.74675.
117.
go back to reference Yang WS et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;10.1073/pnas.1603244113. Yang WS et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;10.1073/pnas.1603244113.
118.
go back to reference Liao P et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;10.1016/j.ccell.2022.02.003. Liao P et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;10.1016/j.ccell.2022.02.003.
119.
go back to reference Ma Y et al. Energy metabolism as a regulator of ferroptosis. Cell Cycle. 2020;10.1080/15384101.2020.1838781. Ma Y et al. Energy metabolism as a regulator of ferroptosis. Cell Cycle. 2020;10.1080/15384101.2020.1838781.
120.
go back to reference Lee H et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;10.1038/s41556-020-0461-8. Lee H et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;10.1038/s41556-020-0461-8.
121.
go back to reference Badgley MA et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;10.1126/science.aaw9872. Badgley MA et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;10.1126/science.aaw9872.
122.
go back to reference Koppula P et al. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;10.1007/s13238-020-00789-5. Koppula P et al. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;10.1007/s13238-020-00789-5.
123.
go back to reference Sun Y et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;10.1038/s41419-018-0794-4. Sun Y et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;10.1038/s41419-018-0794-4.
124.
go back to reference Niu B et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;10.1016/j.biomaterials.2021.121110. Niu B et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;10.1016/j.biomaterials.2021.121110.
125.
go back to reference Gao M et al. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell. 2015;10.1016/j.molcel.2015.06.011. Gao M et al. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell. 2015;10.1016/j.molcel.2015.06.011.
126.
go back to reference Dixon SJ et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;10.7554/eLife.02523. Dixon SJ et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;10.7554/eLife.02523.
127.
go back to reference Hayano M et al. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 2016;10.1038/cdd.2015.93. Hayano M et al. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 2016;10.1038/cdd.2015.93.
128.
go back to reference Liu T et al. The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11. Cancer Res. 2019;10.1158/0008-5472.CAN-18-3037. Liu T et al. The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11. Cancer Res. 2019;10.1158/0008-5472.CAN-18-3037.
129.
go back to reference Zhang Y et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;10.1038/s41556-018-0178-0. Zhang Y et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;10.1038/s41556-018-0178-0.
130.
go back to reference Yang WS et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;10.1016/j.cell.2013.12.010. Yang WS et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;10.1016/j.cell.2013.12.010.
131.
go back to reference Seibt TM et al. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;10.1016/j.freeradbiomed.2018.09.014. Seibt TM et al. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;10.1016/j.freeradbiomed.2018.09.014.
132.
go back to reference Zhang Y et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;10.1038/s41467-021-21841-w. Zhang Y et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;10.1038/s41467-021-21841-w.
133.
go back to reference Yu P et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;10.1038/s41392-021-00507-5. Yu P et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;10.1038/s41392-021-00507-5.
134.
go back to reference Pizato N et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;10.1038/s41598-018-20422-0. Pizato N et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;10.1038/s41598-018-20422-0.
135.
go back to reference Huang Y et al. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology. 2022;10.1210/endocr/bqac014. Huang Y et al. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology. 2022;10.1210/endocr/bqac014.
136.
go back to reference Kang R et al. Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis. Cell Host Microbe. 2018;10.1016/j.chom.2018.05.009. Kang R et al. Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis. Cell Host Microbe. 2018;10.1016/j.chom.2018.05.009.
137.
go back to reference Zhang JY et al. The metabolite alpha-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021;10.1038/s41422-021-00506-9. Zhang JY et al. The metabolite alpha-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021;10.1038/s41422-021-00506-9.
138.
go back to reference Sun R et al. Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation. 2020;10.1186/s12974-020-01988-x. Sun R et al. Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation. 2020;10.1186/s12974-020-01988-x.
139.
go back to reference Sun Z et al. Inhibition of SGLT1 protects against glycemic variability-induced cardiac damage and pyroptosis of cardiomyocytes in diabetic mice. Life Sci. 2021;10.1016/j.lfs.2021.119116. Sun Z et al. Inhibition of SGLT1 protects against glycemic variability-induced cardiac damage and pyroptosis of cardiomyocytes in diabetic mice. Life Sci. 2021;10.1016/j.lfs.2021.119116.
140.
go back to reference Kim SR et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;10.1038/s41467-020-15983-6. Kim SR et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;10.1038/s41467-020-15983-6.
141.
go back to reference Wen H et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;10.1038/ni.2022. Wen H et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;10.1038/ni.2022.
142.
go back to reference Ahechu P et al. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol. 2018;10.3389/fimmu.2018.02918. Ahechu P et al. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol. 2018;10.3389/fimmu.2018.02918.
143.
go back to reference Tsvetkov P et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;10.1126/science.abf0529. Tsvetkov P et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;10.1126/science.abf0529.
144.
go back to reference Zheng P et al. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 2022;10.1186/s13046-022-02485-0. Zheng P et al. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 2022;10.1186/s13046-022-02485-0.
145.
go back to reference Sheftel AD et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences. 2010;10.1073/pnas.1004250107. Sheftel AD et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences. 2010;10.1073/pnas.1004250107.
146.
go back to reference Tang D et al. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Research. 2022;10.1038/s41422-022-00653-7. Tang D et al. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Research. 2022;10.1038/s41422-022-00653-7.
147.
go back to reference Xue Q et al. Copper metabolism in cell death and autophagy. Autophagy. 2023;10.1080/15548627.2023.2200554. Xue Q et al. Copper metabolism in cell death and autophagy. Autophagy. 2023;10.1080/15548627.2023.2200554.
148.
go back to reference Mo X et al. A novel cuproptosis-related prognostic lncRNA signature and lncRNA MIR31HG/miR-193a-3p/TNFRSF21 regulatory axis in lung adenocarcinoma. Front Oncol. 2022;10.3389/fonc.2022.927706. Mo X et al. A novel cuproptosis-related prognostic lncRNA signature and lncRNA MIR31HG/miR-193a-3p/TNFRSF21 regulatory axis in lung adenocarcinoma. Front Oncol. 2022;10.3389/fonc.2022.927706.
149.
go back to reference Yang M et al. A novel signature to guide osteosarcoma prognosis and immune microenvironment: Cuproptosis-related lncRNA. Front Immunol. 2022;10.3389/fimmu.2022.919231. Yang M et al. A novel signature to guide osteosarcoma prognosis and immune microenvironment: Cuproptosis-related lncRNA. Front Immunol. 2022;10.3389/fimmu.2022.919231.
150.
go back to reference Zhang Z et al. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol. 2022;10.3389/fimmu.2022.925618. Zhang Z et al. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol. 2022;10.3389/fimmu.2022.925618.
151.
go back to reference Ji ZH et al. Molecular Subtyping Based on Cuproptosis-Related Genes and Characterization of Tumor Microenvironment Infiltration in Kidney Renal Clear Cell Carcinoma. Front Oncol. 2022;10.3389/fonc.2022.919083. Ji ZH et al. Molecular Subtyping Based on Cuproptosis-Related Genes and Characterization of Tumor Microenvironment Infiltration in Kidney Renal Clear Cell Carcinoma. Front Oncol. 2022;10.3389/fonc.2022.919083.
152.
go back to reference Lv H et al. Comprehensive Analysis of Cuproptosis-Related Genes in Immune Infiltration and Prognosis in Melanoma. Front Pharmacol. 2022;10.3389/fphar.2022.930041. Lv H et al. Comprehensive Analysis of Cuproptosis-Related Genes in Immune Infiltration and Prognosis in Melanoma. Front Pharmacol. 2022;10.3389/fphar.2022.930041.
153.
go back to reference Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 2015;10.1016/j.ceb.2015.02.003. Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 2015;10.1016/j.ceb.2015.02.003.
154.
go back to reference Boya P et al. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;10.1038/ncb2788. Boya P et al. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;10.1038/ncb2788.
155.
go back to reference Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;10.1016/j.cell.2007.12.018. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;10.1016/j.cell.2007.12.018.
156.
go back to reference Lu Q et al. Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells. Cell Death Dis. 2015;10.1038/cddis.2015.344. Lu Q et al. Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells. Cell Death Dis. 2015;10.1038/cddis.2015.344.
157.
go back to reference Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2015;10.1038/cdd.2014.173. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2015;10.1038/cdd.2014.173.
158.
go back to reference Roberts DJ et al. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell. 2014;10.1016/j.molcel.2013.12.019. Roberts DJ et al. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell. 2014;10.1016/j.molcel.2013.12.019.
159.
go back to reference Lamming DW et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;10.1126/science.1215135. Lamming DW et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;10.1126/science.1215135.
160.
go back to reference Luo L et al. BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death Dis. 2021;10.1038/s41419-021-03456-7. Luo L et al. BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death Dis. 2021;10.1038/s41419-021-03456-7.
161.
go back to reference Tan J et al. JMJD2B-induced amino acid alterations enhance the survival of colorectal cancer cells under glucose-deprivation via autophagy. Theranostics. 2020;10.7150/thno.38087. Tan J et al. JMJD2B-induced amino acid alterations enhance the survival of colorectal cancer cells under glucose-deprivation via autophagy. Theranostics. 2020;10.7150/thno.38087.
162.
go back to reference Nowosad A et al. p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol. 2020;10.1038/s41556-020-0554-4. Nowosad A et al. p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol. 2020;10.1038/s41556-020-0554-4.
163.
go back to reference Saha S et al. The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces autophagy by activating AMPK. J Cell Sci. 2021;10.1242/jcs.259306. Saha S et al. The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces autophagy by activating AMPK. J Cell Sci. 2021;10.1242/jcs.259306.
164.
go back to reference Karabiyik C et al. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev Cell. 2021;10.1016/j.devcel.2021.05.010. Karabiyik C et al. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Dev Cell. 2021;10.1016/j.devcel.2021.05.010.
165.
go back to reference Egan DF et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;10.1126/science.1196371. Egan DF et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;10.1126/science.1196371.
166.
go back to reference Chung SJ et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;10.1080/15548627.2017.1332565. Chung SJ et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;10.1080/15548627.2017.1332565.
167.
go back to reference Chang C et al. AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation. Mol Cell. 2015;10.1016/j.molcel.2015.10.037. Chang C et al. AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation. Mol Cell. 2015;10.1016/j.molcel.2015.10.037.
168.
go back to reference Qian X et al. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Mol Cell. 2017;10.1016/j.molcel.2017.01.027. Qian X et al. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Mol Cell. 2017;10.1016/j.molcel.2017.01.027.
169.
go back to reference Mukha A et al. Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization. Autophagy. 2021;10.1080/15548627.2021.1962682. Mukha A et al. Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization. Autophagy. 2021;10.1080/15548627.2021.1962682.
170.
go back to reference Eng CH et al. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal. 2010;10.1126/scisignal.2000911. Eng CH et al. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal. 2010;10.1126/scisignal.2000911.
171.
go back to reference Xia XJ et al. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-gamma-induced malignant transformation of primary bovine mammary epithelial cells. Cell Death Discov. 2016;10.1038/cddiscovery.2015.65. Xia XJ et al. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-gamma-induced malignant transformation of primary bovine mammary epithelial cells. Cell Death Discov. 2016;10.1038/cddiscovery.2015.65.
172.
go back to reference Garcia-Navas R et al. Depletion of L-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy. 2012;10.4161/auto.21315. Garcia-Navas R et al. Depletion of L-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy. 2012;10.4161/auto.21315.
173.
go back to reference Zhang X et al. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma. Cancer Sci. 2019;10.1111/cas.13945. Zhang X et al. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma. Cancer Sci. 2019;10.1111/cas.13945.
174.
go back to reference Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020;10.3389/fcell.2020.555409. Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020;10.3389/fcell.2020.555409.
175.
go back to reference Sivangala Thandi R et al. Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection. Nat Commun. 2020;10.1038/s41467-020-17310-5. Sivangala Thandi R et al. Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection. Nat Commun. 2020;10.1038/s41467-020-17310-5.
176.
go back to reference Halama A et al. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett. 2018;10.1016/j.canlet.2018.05.017. Halama A et al. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett. 2018;10.1016/j.canlet.2018.05.017.
177.
go back to reference Singh R et al. Autophagy regulates lipid metabolism. Nature. 2009;10.1038/nature07976. Singh R et al. Autophagy regulates lipid metabolism. Nature. 2009;10.1038/nature07976.
178.
go back to reference Giampietri C et al. Lipid Storage and Autophagy in Melanoma Cancer Cells. Int J Mol Sci. 2017;10.3390/ijms18061271. Giampietri C et al. Lipid Storage and Autophagy in Melanoma Cancer Cells. Int J Mol Sci. 2017;10.3390/ijms18061271.
179.
go back to reference Inokuchi-Shimizu S et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest. 2014;10.1172/JCI74068. Inokuchi-Shimizu S et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest. 2014;10.1172/JCI74068.
180.
go back to reference Seok JK et al. Oxidized Phospholipids in Tumor Microenvironment Stimulate Tumor Metastasis via Regulation of Autophagy. Cells. 2021;10.3390/cells10030558. Seok JK et al. Oxidized Phospholipids in Tumor Microenvironment Stimulate Tumor Metastasis via Regulation of Autophagy. Cells. 2021;10.3390/cells10030558.
181.
go back to reference Rios-Marco P et al. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. Biochim Biophys Acta. 2013;10.1016/j.bbalip.2013.05.004. Rios-Marco P et al. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. Biochim Biophys Acta. 2013;10.1016/j.bbalip.2013.05.004.
182.
go back to reference Mece O et al. Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nat Commun. 2022;10.1038/s41467-022-30490-6. Mece O et al. Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nat Commun. 2022;10.1038/s41467-022-30490-6.
183.
go back to reference Guo JY et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;10.1101/gad.219642.113. Guo JY et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;10.1101/gad.219642.113.
184.
go back to reference He Z et al. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ. 2013;10.1038/cdd.2013.104. He Z et al. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ. 2013;10.1038/cdd.2013.104.
185.
go back to reference Karvela M et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;10.1080/15548627.2016.1162359. Karvela M et al. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy. 2016;10.1080/15548627.2016.1162359.
186.
go back to reference Saito T et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019;10.1038/s41467-019-08829-3. Saito T et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019;10.1038/s41467-019-08829-3.
187.
go back to reference Kessel DH et al. ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy. 2012;10.4161/auto.20792. Kessel DH et al. ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy. 2012;10.4161/auto.20792.
188.
go back to reference Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nature Reviews Cancer. 2016;10.1038/nrc.2016.77. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nature Reviews Cancer. 2016;10.1038/nrc.2016.77.
189.
go back to reference Guo T et al. Insulin gene enhancer protein 1 mediates glycolysis and tumorigenesis of gastric cancer through regulating glucose transporter 4. Cancer Communications. 2021;10.1002/cac2.12141. Guo T et al. Insulin gene enhancer protein 1 mediates glycolysis and tumorigenesis of gastric cancer through regulating glucose transporter 4. Cancer Communications. 2021;10.1002/cac2.12141.
190.
go back to reference Ancey P-B et al. GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Research. 2021;10.1158/0008-5472.Can-20-2870. Ancey P-B et al. GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Research. 2021;10.1158/0008-5472.Can-20-2870.
191.
go back to reference Li Y et al. Homeostasis Imbalance of YY2 and YY1 Promotes Tumor Growth by Manipulating Ferroptosis. Advanced Science. 2022;10.1002/advs.202104836. Li Y et al. Homeostasis Imbalance of YY2 and YY1 Promotes Tumor Growth by Manipulating Ferroptosis. Advanced Science. 2022;10.1002/advs.202104836.
192.
go back to reference Ma L et al. The m6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biology. 2021;10.1016/j.redox.2020.101801. Ma L et al. The m6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biology. 2021;10.1016/j.redox.2020.101801.
193.
go back to reference Duan F et al. O -GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. Journal of Hepatology. 2018;10.1016/j.jhep.2018.02.003. Duan F et al. O -GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. Journal of Hepatology. 2018;10.1016/j.jhep.2018.02.003.
194.
go back to reference Cheng C et al. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell. 2015;10.1016/j.ccell.2015.09.021. Cheng C et al. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell. 2015;10.1016/j.ccell.2015.09.021.
195.
go back to reference Liu Y et al. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biology. 2022;10.1016/j.redox.2022.102366. Liu Y et al. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biology. 2022;10.1016/j.redox.2022.102366.
196.
go back to reference Kharbanda A et al. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Science Signaling. 2020;10.1126/scisignal.aax2364. Kharbanda A et al. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Science Signaling. 2020;10.1126/scisignal.aax2364.
197.
go back to reference Kadry YA et al. Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis. Open Biology. 2021;10.1098/rsob.210033. Kadry YA et al. Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis. Open Biology. 2021;10.1098/rsob.210033.
198.
go back to reference Chen S et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature. 2017;10.1038/nature23887. Chen S et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature. 2017;10.1038/nature23887.
199.
go back to reference Yang J et al. A Positive Feedback Loop between Inactive VHL-Triggered Histone Lactylation and PDGFRβ Signaling Drives Clear Cell Renal Cell Carcinoma Progression. International Journal of Biological Sciences. 2022;10.7150/ijbs.73398. Yang J et al. A Positive Feedback Loop between Inactive VHL-Triggered Histone Lactylation and PDGFRβ Signaling Drives Clear Cell Renal Cell Carcinoma Progression. International Journal of Biological Sciences. 2022;10.7150/ijbs.73398.
200.
go back to reference Chen L et al. Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression. International Journal of Molecular Sciences. 2022;10.3390/ijms231911943. Chen L et al. Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression. International Journal of Molecular Sciences. 2022;10.3390/ijms231911943.
201.
go back to reference Yu J et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biology. 2021;10.1186/s13059-021-02308-z. Yu J et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biology. 2021;10.1186/s13059-021-02308-z.
202.
go back to reference Li F et al. NADP+-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria Respiration and Induces Apoptosis Resistance. Molecular Cell. 2015;10.1016/j.molcel.2015.10.017. Li F et al. NADP+-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria Respiration and Induces Apoptosis Resistance. Molecular Cell. 2015;10.1016/j.molcel.2015.10.017.
203.
go back to reference Xie J et al. Cuproptosis: mechanisms and links with cancers. Molecular Cancer. 2023;10.1186/s12943-023-01732-y. Xie J et al. Cuproptosis: mechanisms and links with cancers. Molecular Cancer. 2023;10.1186/s12943-023-01732-y.
204.
go back to reference Bandmann O et al. Wilson’s disease and other neurological copper disorders. The Lancet Neurology. 2015;10.1016/s1474-4422(14)70190-5. Bandmann O et al. Wilson’s disease and other neurological copper disorders. The Lancet Neurology. 2015;10.1016/s1474-4422(14)70190-5.
205.
go back to reference Cui L et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nature Biotechnology. 2020;10.1038/s41587-020-0707-9. Cui L et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nature Biotechnology. 2020;10.1038/s41587-020-0707-9.
206.
go back to reference Stockwell BR et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;10.1016/j.cell.2017.09.021. Stockwell BR et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;10.1016/j.cell.2017.09.021.
207.
go back to reference Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011;10.1038/ncb2329. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011;10.1038/ncb2329.
208.
go back to reference Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018;10.1038/nrm.2017.95. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018;10.1038/nrm.2017.95.
209.
go back to reference Zhang T et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science. 2023;10.1126/science.abn1725. Zhang T et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science. 2023;10.1126/science.abn1725.
210.
go back to reference Guo H et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biology. 2022;10.1016/j.redox.2021.102227. Guo H et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biology. 2022;10.1016/j.redox.2021.102227.
211.
go back to reference Kim J et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology. 2011;10.1038/ncb2152. Kim J et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology. 2011;10.1038/ncb2152.
212.
go back to reference Liu W et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biology. 2022;10.1016/j.redox.2022.102344. Liu W et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biology. 2022;10.1016/j.redox.2022.102344.
213.
go back to reference Wei Q et al. Maslinic Acid Inhibits Colon Tumorigenesis by the AMPK–mTOR Signaling Pathway. Journal of Agricultural and Food Chemistry. 2019;10.1021/acs.jafc.9b00170. Wei Q et al. Maslinic Acid Inhibits Colon Tumorigenesis by the AMPK–mTOR Signaling Pathway. Journal of Agricultural and Food Chemistry. 2019;10.1021/acs.jafc.9b00170.
214.
go back to reference Wang X et al. HKDC1 promotes the tumorigenesis and glycolysis in lung adenocarcinoma via regulating AMPK/mTOR signaling pathway. Cancer Cell International. 2020;10.1186/s12935-020-01539-7. Wang X et al. HKDC1 promotes the tumorigenesis and glycolysis in lung adenocarcinoma via regulating AMPK/mTOR signaling pathway. Cancer Cell International. 2020;10.1186/s12935-020-01539-7.
215.
go back to reference Huang J et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut. 2022;10.1136/gutjnl-2020-321031. Huang J et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut. 2022;10.1136/gutjnl-2020-321031.
216.
go back to reference Lee K-H, Kang T-B. The Molecular Links between Cell Death and Inflammasome. Cells 2019;10.3390/cells8091057. Lee K-H, Kang T-B. The Molecular Links between Cell Death and Inflammasome. Cells 2019;10.3390/cells8091057.
217.
go back to reference Medina CB et al. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020;10.1038/s41586-020-2121-3. Medina CB et al. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020;10.1038/s41586-020-2121-3.
218.
go back to reference Du T et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021;10.1002/ctm2.492. Du T et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med. 2021;10.1002/ctm2.492.
219.
go back to reference Erkes DA et al. Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov. 2020;10.1158/2159–8290.CD-19-0672. Erkes DA et al. Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov. 2020;10.1158/2159–8290.CD-19-0672.
220.
go back to reference Krysko DV et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer. 2012;10.1038/nrc3380. Krysko DV et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer. 2012;10.1038/nrc3380.
221.
go back to reference Galluzzi L et al. Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology. 2016;10.1038/nri.2016.107. Galluzzi L et al. Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology. 2016;10.1038/nri.2016.107.
222.
go back to reference Obeid M et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine. 2006;10.1038/nm1523. Obeid M et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine. 2006;10.1038/nm1523.
223.
go back to reference Wang W et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;10.1038/s41586-019-1170-y. Wang W et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;10.1038/s41586-019-1170-y.
224.
go back to reference Efimova I et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. Journal for ImmunoTherapy of Cancer. 2020;10.1136/jitc-2020-001369. Efimova I et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. Journal for ImmunoTherapy of Cancer. 2020;10.1136/jitc-2020-001369.
225.
go back to reference Tong X et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology. 2022;10.1186/s13045-022-01392-3. Tong X et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology. 2022;10.1186/s13045-022-01392-3.
226.
go back to reference Qin Y et al. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Molecular Cancer. 2023;10.1186/s12943-023-01752-8. Qin Y et al. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Molecular Cancer. 2023;10.1186/s12943-023-01752-8.
227.
go back to reference Jin Y et al. CRMP2 derived from cancer associated fibroblasts facilitates progression of ovarian cancer via HIF-1α-glycolysis signaling pathway. Cell Death & Disease. 2022;10.1038/s41419-022-05129-5. Jin Y et al. CRMP2 derived from cancer associated fibroblasts facilitates progression of ovarian cancer via HIF-1α-glycolysis signaling pathway. Cell Death & Disease. 2022;10.1038/s41419-022-05129-5.
228.
go back to reference Wang Z-H et al. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. 2021;10.1016/j.ebiom.2021.103627. Wang Z-H et al. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. 2021;10.1016/j.ebiom.2021.103627.
229.
go back to reference Rabiee S et al. Autophagic, apoptotic, and necrotic cancer cell fates triggered by acidic pH microenvironment. J Cell Physiol. 2019;10.1002/jcp.27876. Rabiee S et al. Autophagic, apoptotic, and necrotic cancer cell fates triggered by acidic pH microenvironment. J Cell Physiol. 2019;10.1002/jcp.27876.
230.
go back to reference Zhang A et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 2021;10.7150/thno.53749. Zhang A et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 2021;10.7150/thno.53749.
231.
go back to reference Vitale I et al. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019;10.1016/j.cmet.2019.06.001. Vitale I et al. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019;10.1016/j.cmet.2019.06.001.
232.
go back to reference Chen D et al. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 2021;10.7150/thno.51777. Chen D et al. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 2021;10.7150/thno.51777.
233.
go back to reference Sacco A et al. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells. 2021;10.3390/cells10020303. Sacco A et al. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells. 2021;10.3390/cells10020303.
234.
go back to reference Fischer K et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood. 2007;10.1182/blood-2006-07-035972. Fischer K et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood. 2007;10.1182/blood-2006-07-035972.
235.
go back to reference Watson MJ et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;10.1038/s41586-020-03045-2. Watson MJ et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;10.1038/s41586-020-03045-2.
236.
go back to reference Kumagai S et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;10.1016/j.ccell.2022.01.001. Kumagai S et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;10.1016/j.ccell.2022.01.001.
237.
go back to reference Deng H et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. Journal for ImmunoTherapy of Cancer. 2021;10.1136/jitc-2020-002305. Deng H et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. Journal for ImmunoTherapy of Cancer. 2021;10.1136/jitc-2020-002305.
238.
go back to reference Lim JX et al. Programmed cell death-1 receptor-mediated regulation of Tbet. +. NK1.1. –. innate lymphoid cells within the tumor microenvironment. Proceedings of the National Academy of Sciences. 2023;10.1073/pnas.2216587120. Lim JX et al. Programmed cell death-1 receptor-mediated regulation of Tbet. +. NK1.1. –. innate lymphoid cells within the tumor microenvironment. Proceedings of the National Academy of Sciences. 2023;10.1073/pnas.2216587120.
239.
go back to reference Végran F et al. Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that Drives Tumor Angiogenesis. Cancer Research. 2011;10.1158/0008-5472.Can-10-2828. Végran F et al. Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that Drives Tumor Angiogenesis. Cancer Research. 2011;10.1158/0008-5472.Can-10-2828.
240.
go back to reference Manzo T et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8 + T cells. Journal of Experimental Medicine. 2020;10.1084/jem.20191920. Manzo T et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8 + T cells. Journal of Experimental Medicine. 2020;10.1084/jem.20191920.
241.
go back to reference Yang K et al. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 2023;10.7150/thno.82920. Yang K et al. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 2023;10.7150/thno.82920.
242.
go back to reference Zhang Y et al. Enhancing CD8 + T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell. 2017;10.1016/j.ccell.2017.08.004. Zhang Y et al. Enhancing CD8 + T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell. 2017;10.1016/j.ccell.2017.08.004.
243.
go back to reference Ringel AE et al. Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell. 2020;10.1016/j.cell.2020.11.009. Ringel AE et al. Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell. 2020;10.1016/j.cell.2020.11.009.
244.
go back to reference Ma X et al. CD36-mediated ferroptosis dampens intratumoral CD8 + T cell effector function and impairs their antitumor ability. Cell Metabolism. 2021;10.1016/j.cmet.2021.02.015. Ma X et al. CD36-mediated ferroptosis dampens intratumoral CD8 + T cell effector function and impairs their antitumor ability. Cell Metabolism. 2021;10.1016/j.cmet.2021.02.015.
245.
go back to reference Qin R et al. Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer. 2021;10.1136/jitc-2021-002840. Qin R et al. Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer. 2021;10.1136/jitc-2021-002840.
246.
go back to reference Gross B et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology. 2016;10.1038/nrendo.2016.135. Gross B et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology. 2016;10.1038/nrendo.2016.135.
247.
go back to reference Ganguly K et al. Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance. Gastroenterology. 2022;10.1053/j.gastro.2021.09.017. Ganguly K et al. Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance. Gastroenterology. 2022;10.1053/j.gastro.2021.09.017.
248.
go back to reference Gao P et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;10.1038/nature07823. Gao P et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;10.1038/nature07823.
249.
go back to reference Yuneva M et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. The Journal of Cell Biology. 2007;10.1083/jcb.200703099. Yuneva M et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. The Journal of Cell Biology. 2007;10.1083/jcb.200703099.
250.
go back to reference Yilmaz M et al. Transcription factor Dlx2 protects from TGFβ-induced cell-cycle arrest and apoptosis. The EMBO Journal. 2011;10.1038/emboj.2011.319. Yilmaz M et al. Transcription factor Dlx2 protects from TGFβ-induced cell-cycle arrest and apoptosis. The EMBO Journal. 2011;10.1038/emboj.2011.319.
251.
go back to reference Inaba Y et al. The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nature Communications. 2023;10.1038/s41467-023-35804-w. Inaba Y et al. The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nature Communications. 2023;10.1038/s41467-023-35804-w.
252.
go back to reference van den Bulk J et al. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 2018;10.1098/rsob.180037. van den Bulk J et al. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 2018;10.1098/rsob.180037.
253.
go back to reference Mantovani A et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;10.1038/nrclinonc.2016.217. Mantovani A et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;10.1038/nrclinonc.2016.217.
254.
go back to reference Chang L et al. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell. 2021;10.1016/j.ccell.2020.12.008. Chang L et al. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell. 2021;10.1016/j.ccell.2020.12.008.
255.
go back to reference Yin J et al. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front Immunol. 2018;10.3389/fimmu.2018.01697. Yin J et al. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front Immunol. 2018;10.3389/fimmu.2018.01697.
256.
go back to reference Ser Z et al. Targeting One Carbon Metabolism with an Antimetabolite Disrupts Pyrimidine Homeostasis and Induces Nucleotide Overflow. Cell Reports. 2016;10.1016/j.celrep.2016.05.035. Ser Z et al. Targeting One Carbon Metabolism with an Antimetabolite Disrupts Pyrimidine Homeostasis and Induces Nucleotide Overflow. Cell Reports. 2016;10.1016/j.celrep.2016.05.035.
257.
go back to reference Thomas S et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 2013;10.1517/14728222.2013.733001. Thomas S et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 2013;10.1517/14728222.2013.733001.
258.
go back to reference Tengesdal IW et al. Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proc Natl Acad Sci U S A. 2021;10.1073/pnas.2000915118. Tengesdal IW et al. Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proc Natl Acad Sci U S A. 2021;10.1073/pnas.2000915118.
259.
go back to reference Theivanthiran B et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;10.1172/JCI133055. Theivanthiran B et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;10.1172/JCI133055.
260.
go back to reference Carbone M, Melino G. Lipid metabolism offers anticancer treatment by regulating ferroptosis. Cell Death Differ 2019;10.1038/s41418-019-0418-2. Carbone M, Melino G. Lipid metabolism offers anticancer treatment by regulating ferroptosis. Cell Death Differ 2019;10.1038/s41418-019-0418-2.
261.
go back to reference Chen HT et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;10.1186/s12943-019-1030-2. Chen HT et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;10.1186/s12943-019-1030-2.
262.
go back to reference White E et al. Autophagy, metabolism, and Cancer. Clin Cancer Res 2015;10.1158/1078 – 0432.CCR-15-0490. White E et al. Autophagy, metabolism, and Cancer. Clin Cancer Res 2015;10.1158/1078 – 0432.CCR-15-0490.
263.
go back to reference Levy JMM et al. Targeting autophagy in cancer. Nat Rev Cancer. 2017;10.1038/nrc.2017.53. Levy JMM et al. Targeting autophagy in cancer. Nat Rev Cancer. 2017;10.1038/nrc.2017.53.
264.
go back to reference Andersen JL, Kornbluth S. The tangled circuitry of metabolism and apoptosis. Mol Cell. 2013;10.1016/j.molcel.2012.12.026. Andersen JL, Kornbluth S. The tangled circuitry of metabolism and apoptosis. Mol Cell. 2013;10.1016/j.molcel.2012.12.026.
265.
go back to reference Kim KH, Lee MS. Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol 2014;10.1038/nrendo.2014.35. Kim KH, Lee MS. Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol 2014;10.1038/nrendo.2014.35.
266.
go back to reference Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab 2020;10.1016/j.cmet.2020.10.011. Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab 2020;10.1016/j.cmet.2020.10.011.
267.
go back to reference Mulukutla BC et al. Regulation of Glucose Metabolism - A Perspective From Cell Bioprocessing. Trends Biotechnol. 2016;10.1016/j.tibtech.2016.04.012. Mulukutla BC et al. Regulation of Glucose Metabolism - A Perspective From Cell Bioprocessing. Trends Biotechnol. 2016;10.1016/j.tibtech.2016.04.012.
268.
go back to reference Ye J, Medzhitov R. Control strategies in systemic metabolism. Nat Metab 2019;10.1038/s42255-019-0118-8. Ye J, Medzhitov R. Control strategies in systemic metabolism. Nat Metab 2019;10.1038/s42255-019-0118-8.
269.
go back to reference Verhagen AM et al. Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell. 2000;10.1016/s0092-8674(00)00009-x. Verhagen AM et al. Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell. 2000;10.1016/s0092-8674(00)00009-x.
270.
go back to reference Du C et al. Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition. Cell. 2000;10.1016/s0092-8674(00)00008–8. Du C et al. Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition. Cell. 2000;10.1016/s0092-8674(00)00008–8.
271.
go back to reference Choi S, Singh SV. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res 2005;10.1158/0008-5472.CAN-04-3616. Choi S, Singh SV. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res 2005;10.1158/0008-5472.CAN-04-3616.
272.
go back to reference Zhu D et al. Cisatracurium inhibits the growth and induces apoptosis of ovarian cancer cells by promoting lincRNA-p21. Bioengineered. 2021;10.1080/21655979.2021.1916271. Zhu D et al. Cisatracurium inhibits the growth and induces apoptosis of ovarian cancer cells by promoting lincRNA-p21. Bioengineered. 2021;10.1080/21655979.2021.1916271.
273.
go back to reference Chiappori A et al. Obatoclax Mesylate, a Pan–Bcl-2 Inhibitor, in Combination with Docetaxel in a Phase 1/2 Trial in Relapsed Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology. 2014;10.1097/jto.0000000000000027. Chiappori A et al. Obatoclax Mesylate, a Pan–Bcl-2 Inhibitor, in Combination with Docetaxel in a Phase 1/2 Trial in Relapsed Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology. 2014;10.1097/jto.0000000000000027.
274.
go back to reference Or CR et al. Obatoclax, a Pan-BCL-2 Inhibitor, Downregulates Survivin to Induce Apoptosis in Human Colorectal Carcinoma Cells Via Suppressing WNT/beta-catenin Signaling. Int J Mol Sci. 2020;10.3390/ijms21051773. Or CR et al. Obatoclax, a Pan-BCL-2 Inhibitor, Downregulates Survivin to Induce Apoptosis in Human Colorectal Carcinoma Cells Via Suppressing WNT/beta-catenin Signaling. Int J Mol Sci. 2020;10.3390/ijms21051773.
275.
go back to reference Long K et al. Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis. 2021;10.1038/s41419-021-03804-7. Long K et al. Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis. 2021;10.1038/s41419-021-03804-7.
276.
go back to reference Wu L-Y et al. Curcumin Attenuates Adipogenesis by Inducing Preadipocyte Apoptosis and Inhibiting Adipocyte Differentiation. Nutrients. 2019;10.3390/nu11102307. Wu L-Y et al. Curcumin Attenuates Adipogenesis by Inducing Preadipocyte Apoptosis and Inhibiting Adipocyte Differentiation. Nutrients. 2019;10.3390/nu11102307.
277.
go back to reference Zhou C et al. Curcumin inhibits AP-2gamma-induced apoptosis in the human malignant testicular germ cells in vitro. Acta Pharmacol Sin. 2013;10.1038/aps.2013.38. Zhou C et al. Curcumin inhibits AP-2gamma-induced apoptosis in the human malignant testicular germ cells in vitro. Acta Pharmacol Sin. 2013;10.1038/aps.2013.38.
278.
go back to reference Ning R et al. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol Res. 2021;10.1186/s40659-021-00363-1. Ning R et al. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol Res. 2021;10.1186/s40659-021-00363-1.
279.
go back to reference Kim BM, Hong SH. Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis 2011;10.1007/s10495-010-0557-x. Kim BM, Hong SH. Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis 2011;10.1007/s10495-010-0557-x.
280.
go back to reference Vandewynckel YP et al. Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure. Oncotarget. 2015;10.18632/oncotarget.4377. Vandewynckel YP et al. Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure. Oncotarget. 2015;10.18632/oncotarget.4377.
281.
go back to reference Hassouneh B et al. Tetrathiomolybdate promotes tumor necrosis and prevents distant metastases by suppressing angiogenesis in head and neck cancer. Mol Cancer Ther. 2007;10.1158/1535–7163.MCT-06-0524. Hassouneh B et al. Tetrathiomolybdate promotes tumor necrosis and prevents distant metastases by suppressing angiogenesis in head and neck cancer. Mol Cancer Ther. 2007;10.1158/1535–7163.MCT-06-0524.
282.
go back to reference Babcook MA et al. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells. Cell Death Dis. 2014;10.1038/cddis.2014.500. Babcook MA et al. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells. Cell Death Dis. 2014;10.1038/cddis.2014.500.
283.
go back to reference Xu C et al. Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance. Biomed Pharmacother. 2013;10.1016/j.biopha.2012.10.005. Xu C et al. Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance. Biomed Pharmacother. 2013;10.1016/j.biopha.2012.10.005.
284.
go back to reference Lee SY et al. CuZnSOD and MnSOD inhibit metabolic stress-induced necrosis and multicellular tumour spheroid growth. Int J Oncol. 2010;10.3892/ijo_00000667. Lee SY et al. CuZnSOD and MnSOD inhibit metabolic stress-induced necrosis and multicellular tumour spheroid growth. Int J Oncol. 2010;10.3892/ijo_00000667.
285.
go back to reference Hannes S et al. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Lett. 2016;10.1016/j.canlet.2016.05.036. Hannes S et al. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Lett. 2016;10.1016/j.canlet.2016.05.036.
286.
go back to reference Wang Y et al. PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis. Int J Biol Sci. 2018;10.7150/ijbs.27854. Wang Y et al. PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis. Int J Biol Sci. 2018;10.7150/ijbs.27854.
287.
go back to reference Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2021;10.1016/j.phrs.2020.105297. Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2021;10.1016/j.phrs.2020.105297.
288.
go back to reference Johnston AN et al. Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis. Proc Natl Acad Sci U S A. 2020;10.1073/pnas.1916503117. Johnston AN et al. Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis. Proc Natl Acad Sci U S A. 2020;10.1073/pnas.1916503117.
289.
go back to reference Mao C et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;10.1038/s41586-021-03539-7. Mao C et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;10.1038/s41586-021-03539-7.
290.
go back to reference Zhang W et al. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 2021;10.1172/JCI152067. Zhang W et al. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 2021;10.1172/JCI152067.
291.
go back to reference Chen P et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther. 2020;10.1038/s41392-020-0149-3. Chen P et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther. 2020;10.1038/s41392-020-0149-3.
292.
go back to reference Sui X et al. RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol. 2018;10.3389/fphar.2018.01371. Sui X et al. RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol. 2018;10.3389/fphar.2018.01371.
293.
go back to reference Li S et al. RSL3 Drives Ferroptosis through NF-kappaB Pathway Activation and GPX4 Depletion in Glioblastoma. Oxid Med Cell Longev. 2021;10.1155/2021/2915019. Li S et al. RSL3 Drives Ferroptosis through NF-kappaB Pathway Activation and GPX4 Depletion in Glioblastoma. Oxid Med Cell Longev. 2021;10.1155/2021/2915019.
294.
go back to reference Wei R et al. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 2021;10.7150/ijbs.59404. Wei R et al. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 2021;10.7150/ijbs.59404.
295.
go back to reference Yang J et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;10.1186/s13046-021-02012-7. Yang J et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;10.1186/s13046-021-02012-7.
296.
go back to reference Du J et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;10.1016/j.freeradbiomed.2018.12.011. Du J et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;10.1016/j.freeradbiomed.2018.12.011.
297.
go back to reference Gao W et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;10.1002/1878-0261.13079. Gao W et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;10.1002/1878-0261.13079.
298.
go back to reference Yang J et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 2021;10.1038/s41419-021-04367-3. Yang J et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 2021;10.1038/s41419-021-04367-3.
299.
go back to reference Lin H et al. EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed Pharmacother. 2021;10.1016/j.biopha.2020.111202. Lin H et al. EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed Pharmacother. 2021;10.1016/j.biopha.2020.111202.
300.
go back to reference Zhou X et al. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res. 2021;10.1016/j.phrs.2020.105305. Zhou X et al. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res. 2021;10.1016/j.phrs.2020.105305.
301.
go back to reference Yao X et al. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 2021;10.1186/s12951-021-01058-1. Yao X et al. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 2021;10.1186/s12951-021-01058-1.
302.
go back to reference Zhao L et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer. 2021;10.1007/s10120-021-01159-8. Zhao L et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer. 2021;10.1007/s10120-021-01159-8.
303.
go back to reference Zilka O et al. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent Sci. 2017;10.1021/acscentsci.7b00028. Zilka O et al. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent Sci. 2017;10.1021/acscentsci.7b00028.
304.
go back to reference Chen Y et al. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 2019;10.1186/s13046-019-1413-7. Chen Y et al. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 2019;10.1186/s13046-019-1413-7.
305.
go back to reference Zheng Z et al. Metformin activates AMPK/SIRT1/NF-kappaB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020;10.1080/15384101.2020.1743911. Zheng Z et al. Metformin activates AMPK/SIRT1/NF-kappaB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020;10.1080/15384101.2020.1743911.
306.
go back to reference Zhang CC et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 2019;10.1007/s10495-019-01515-1. Zhang CC et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 2019;10.1007/s10495-019-01515-1.
307.
go back to reference Zhang X et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis. Acta Pharm Sin B. 2020;10.1016/j.apsb.2020.06.015. Zhang X et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis. Acta Pharm Sin B. 2020;10.1016/j.apsb.2020.06.015.
308.
go back to reference An H et al. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 2021;10.1038/s41419-021-03454-9. An H et al. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 2021;10.1038/s41419-021-03454-9.
309.
go back to reference Johnson DC et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 2018;10.1038/s41591-018-0082-y. Johnson DC et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 2018;10.1038/s41591-018-0082-y.
310.
go back to reference Ren LW et al. Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00752-y. Ren LW et al. Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00752-y.
311.
go back to reference Li Y et al. Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells. Chem Biol Interact. 2021;10.1016/j.cbi.2021.109434. Li Y et al. Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells. Chem Biol Interact. 2021;10.1016/j.cbi.2021.109434.
312.
go back to reference Shen Z et al. Metformin inhibits hepatocellular carcinoma development by inducing apoptosis and pyroptosis through regulating FOXO3. Aging (Albany NY). 2021;10.18632/aging.203464. Shen Z et al. Metformin inhibits hepatocellular carcinoma development by inducing apoptosis and pyroptosis through regulating FOXO3. Aging (Albany NY). 2021;10.18632/aging.203464.
313.
go back to reference Hu JJ et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;10.1038/s41590-020-0669-6. Hu JJ et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;10.1038/s41590-020-0669-6.
314.
go back to reference Yuan R et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res. 2021;10.1016/j.phrs.2021.105748. Yuan R et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res. 2021;10.1016/j.phrs.2021.105748.
315.
go back to reference Zang Y et al. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin Cancer Res 2012;10.1158/1078 – 0432.CCR-12-1213. Zang Y et al. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin Cancer Res 2012;10.1158/1078 – 0432.CCR-12-1213.
316.
go back to reference Fan TF et al. Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget. 2016;10.18632/oncotarget.10836. Fan TF et al. Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget. 2016;10.18632/oncotarget.10836.
317.
go back to reference Din SRU et al. Latcripin-7A from Lentinula edodes C91-3 induces apoptosis, autophagy, and cell cycle arrest at G1 phase in human gastric cancer cells via inhibiting PI3K/Akt/mTOR signaling. Eur J Pharmacol. 2021;10.1016/j.ejphar.2021.174305. Din SRU et al. Latcripin-7A from Lentinula edodes C91-3 induces apoptosis, autophagy, and cell cycle arrest at G1 phase in human gastric cancer cells via inhibiting PI3K/Akt/mTOR signaling. Eur J Pharmacol. 2021;10.1016/j.ejphar.2021.174305.
318.
go back to reference Shen YQ et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2018;10.1111/jpi.12461. Shen YQ et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2018;10.1111/jpi.12461.
319.
go back to reference Wang Y et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018;10.1186/s13046-018-0731-5. Wang Y et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018;10.1186/s13046-018-0731-5.
320.
go back to reference Kim KW et al. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy. 2008;10.4161/auto.6058. Kim KW et al. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy. 2008;10.4161/auto.6058.
321.
go back to reference Cao C et al. Narciclasine induces autophagy-dependent apoptosis in triple-negative breast cancer cells by regulating the AMPK-ULK1 axis. Cell Prolif. 2018;10.1111/cpr.12518. Cao C et al. Narciclasine induces autophagy-dependent apoptosis in triple-negative breast cancer cells by regulating the AMPK-ULK1 axis. Cell Prolif. 2018;10.1111/cpr.12518.
322.
go back to reference Harder BG et al. Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med. 2019;10.1186/s10020-019-0116-z. Harder BG et al. Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med. 2019;10.1186/s10020-019-0116-z.
Metadata
Title
Crosstalk between metabolism and cell death in tumorigenesis
Authors
Shichao Yang
Caden Hu
Xiaomei Chen
Yi Tang
Juanjuan Li
Hanqing Yang
Yi Yang
Binwu Ying
Xue Xiao
Shang‑Ze Li
Li Gu
Yahui Zhu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2024
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-024-01977-1

Other articles of this Issue 1/2024

Molecular Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine