Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2014

01-06-2014 | Original Article

Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease

Authors: Andreas Matusch, Carsten Saft, David Elmenhorst, Peter H. Kraus, Ralf Gold, Hans-Peter Hartung, Andreas Bauer

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2014

Login to get access

Abstract

Purpose

To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington’s disease (HD).

Methods

We quantified the cerebral binding potential (BP ND) of the A1AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [18 F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36).

Results

Cerebral A1AR values of preHD-A subjects were generally higher than those of controls (by up to 31 %, p < .01, in the thalamus on average). Across stages a successive reduction of A1AR BPND was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25 %, p < .01, in the caudatus and amygdala. There was a strong correlation between A1AR BP ND and years to onset. Before onset of HD, the assumed annual rates of change of A1AR density were −1.2 % in the caudatus, −1.7 % in the thalamus and −3.4 % in the amygdala, while the corresponding volume losses amounted to 0.6 %, 0.1 % and 0.2 %, respectively.

Conclusions

Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism.
Literature
1.
go back to reference Langbehn DR, Hayden MR, Paulsen JS. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):397–408. doi:10.1002/ajmg.b.30992.PubMedCentralPubMed Langbehn DR, Hayden MR, Paulsen JS. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):397–408. doi:10.​1002/​ajmg.​b.​30992.PubMedCentralPubMed
2.
go back to reference Kunig G, Leenders KL, Sanchez-Pernaute R, Antonini A, Vontobel P, Verhagen A, et al. Benzodiazepine receptor binding in Huntington′s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol. 2000;47(5):644–8.PubMedCrossRef Kunig G, Leenders KL, Sanchez-Pernaute R, Antonini A, Vontobel P, Verhagen A, et al. Benzodiazepine receptor binding in Huntington′s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol. 2000;47(5):644–8.PubMedCrossRef
4.
go back to reference Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18 F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39(6):1030–6. doi:10.1007/s00259-012-2114-z.PubMedCrossRef Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18 F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39(6):1030–6. doi:10.​1007/​s00259-012-2114-z.PubMedCrossRef
6.
go back to reference Ginovart N, Lundin A, Farde L, Halldin C, Backman L, Swahn CG, et al. PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain. 1997;120(Pt 3):503–14.PubMedCrossRef Ginovart N, Lundin A, Farde L, Halldin C, Backman L, Swahn CG, et al. PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain. 1997;120(Pt 3):503–14.PubMedCrossRef
7.
go back to reference Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LH, Sahakian B, et al. Huntington’s disease progression. PET and clinical observations. Brain. 1999;122(Pt 12):2353–63.PubMedCrossRef Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LH, Sahakian B, et al. Huntington’s disease progression. PET and clinical observations. Brain. 1999;122(Pt 12):2353–63.PubMedCrossRef
8.
go back to reference Pavese N, Andrews TC, Brooks DJ, Ho AK, Rosser AE, Barker RA, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain. 2003;126(Pt 5):1127–35.PubMedCrossRef Pavese N, Andrews TC, Brooks DJ, Ho AK, Rosser AE, Barker RA, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain. 2003;126(Pt 5):1127–35.PubMedCrossRef
9.
go back to reference Martin WR, Hayden MR. Cerebral glucose and dopa metabolism in movement disorders. Can J Neurol Sci. 1987;14(3 Suppl):448–51.PubMed Martin WR, Hayden MR. Cerebral glucose and dopa metabolism in movement disorders. Can J Neurol Sci. 1987;14(3 Suppl):448–51.PubMed
10.
go back to reference Bohnen NI, Koeppe RA, Meyer P, Ficaro E, Wernette K, Kilbourn MR, et al. Decreased striatal monoaminergic terminals in Huntington disease. Neurology. 2000;54(9):1753–9.PubMedCrossRef Bohnen NI, Koeppe RA, Meyer P, Ficaro E, Wernette K, Kilbourn MR, et al. Decreased striatal monoaminergic terminals in Huntington disease. Neurology. 2000;54(9):1753–9.PubMedCrossRef
11.
go back to reference Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18 F]CPFPX and positron emission tomography. Neuroimage. 2003;19(4):1760–9.PubMedCrossRef Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18 F]CPFPX and positron emission tomography. Neuroimage. 2003;19(4):1760–9.PubMedCrossRef
12.
go back to reference Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem. 2002;45(23):5150–6.PubMedCrossRef Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem. 2002;45(23):5150–6.PubMedCrossRef
15.
go back to reference Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. 18 F-CPFPX PET: on the generation of parametric images and the effect of scan duration. J Nucl Med. 2006;47(2):200–7.PubMed Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. 18 F-CPFPX PET: on the generation of parametric images and the effect of scan duration. J Nucl Med. 2006;47(2):200–7.PubMed
17.
go back to reference Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN. Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol. 2003;2(6):366–74.PubMedCrossRef Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN. Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol. 2003;2(6):366–74.PubMedCrossRef
18.
go back to reference Gianfriddo M, Melani A, Turchi D, Giovannini MG, Pedata F. Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol Dis. 2004;17(1):77–88.PubMedCrossRef Gianfriddo M, Melani A, Turchi D, Giovannini MG, Pedata F. Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol Dis. 2004;17(1):77–88.PubMedCrossRef
21.
26.
go back to reference van Oostrom JC, Maguire RP, Verschuuren-Bemelmans CC, van der Veenma Duin L, Pruim J, Roos RA, et al. Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology. 2005;65(6):941–3.PubMedCrossRef van Oostrom JC, Maguire RP, Verschuuren-Bemelmans CC, van der Veenma Duin L, Pruim J, Roos RA, et al. Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology. 2005;65(6):941–3.PubMedCrossRef
27.
go back to reference Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11(1):42–53. doi:10.1016/S1474-4422(11)70263-0.PubMedCrossRef Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 2012;11(1):42–53. doi:10.​1016/​S1474-4422(11)70263-0.PubMedCrossRef
28.
go back to reference Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet. 2007;16(15):1845–61.PubMedCrossRef Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet. 2007;16(15):1845–61.PubMedCrossRef
29.
go back to reference Ren H, Stiles GL. A single-stranded DNA binding site in the human A1 adenosine receptor gene promoter. Mol Pharmacol. 1998;53(1):43–51.PubMed Ren H, Stiles GL. A single-stranded DNA binding site in the human A1 adenosine receptor gene promoter. Mol Pharmacol. 1998;53(1):43–51.PubMed
30.
go back to reference Rivkees SA, Chen M, Kulkarni J, Browne J, Zhao Z. Characterization of the murine A1 adenosine receptor promoter, potent regulation by GATA-4 and Nkx2.5. J Biol Chem. 1999;274(20):14204–9.PubMedCrossRef Rivkees SA, Chen M, Kulkarni J, Browne J, Zhao Z. Characterization of the murine A1 adenosine receptor promoter, potent regulation by GATA-4 and Nkx2.5. J Biol Chem. 1999;274(20):14204–9.PubMedCrossRef
35.
go back to reference Doolette DJ. Mechanism of adenosine accumulation in the hippocampal slice during energy deprivation. Neurochem Int. 1997;30(2):211–23.PubMedCrossRef Doolette DJ. Mechanism of adenosine accumulation in the hippocampal slice during energy deprivation. Neurochem Int. 1997;30(2):211–23.PubMedCrossRef
36.
go back to reference Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP. Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett. 2001;297(3):211–5.PubMedCrossRef Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP. Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett. 2001;297(3):211–5.PubMedCrossRef
37.
go back to reference Rivkees SA, Price SL, Zhou FC. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res. 1995;677(2):193–203.PubMedCrossRef Rivkees SA, Price SL, Zhou FC. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res. 1995;677(2):193–203.PubMedCrossRef
38.
go back to reference Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49(5):650–8.PubMedCrossRef Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol. 2001;49(5):650–8.PubMedCrossRef
41.
go back to reference Beste C, Saft C, Gunturkun O, Falkenstein M. Increased cognitive functioning in symptomatic Huntington’s disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention. J Neurosci. 2008;28(45):11695–702. doi:10.1523/JNEUROSCI.2659-08.2008.PubMedCrossRef Beste C, Saft C, Gunturkun O, Falkenstein M. Increased cognitive functioning in symptomatic Huntington’s disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention. J Neurosci. 2008;28(45):11695–702. doi:10.​1523/​JNEUROSCI.​2659-08.​2008.PubMedCrossRef
43.
go back to reference Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci. 2003;23(34):10982–7.PubMed Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci. 2003;23(34):10982–7.PubMed
45.
46.
go back to reference Saft C, Andrich J, Meisel NM, Przuntek H, Müller T. Assessment of complex movements reflects dysfunction in Huntington's disease. J Neurol. 2003;250(12):1469–74. doi:10.1007/s00415-003-0256-4. Saft C, Andrich J, Meisel NM, Przuntek H, Müller T. Assessment of complex movements reflects dysfunction in Huntington's disease. J Neurol. 2003;250(12):1469–74. doi:10.​1007/​s00415-003-0256-4.
Metadata
Title
Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease
Authors
Andreas Matusch
Carsten Saft
David Elmenhorst
Peter H. Kraus
Ralf Gold
Hans-Peter Hartung
Andreas Bauer
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-014-2724-8

Other articles of this Issue 6/2014

European Journal of Nuclear Medicine and Molecular Imaging 6/2014 Go to the issue