Skip to main content
Top
Published in: Strahlentherapie und Onkologie 2/2012

01-02-2012 | Original article

Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy

Authors: I. Fotina, C. Lütgendorf-Caucig, M. Stock, R. Pötter, D. Georg

Published in: Strahlentherapie und Onkologie | Issue 2/2012

Login to get access

Abstract

Background and purpose

Inter-observer studies represent a valid method for the evaluation of target definition uncertainties and contouring guidelines. However, data from the literature do not yet give clear guidelines for reporting contouring variability. Thus, the purpose of this work was to compare and discuss various methods to determine variability on the basis of clinical cases and a literature review.

Patients and methods

In this study, 7 prostate and 8 lung cases were contoured on CT images by 8 experienced observers. Analysis of variability included descriptive statistics, calculation of overlap measures, and statistical measures of agreement. Cross tables with ratios and correlations were established for overlap parameters.

Results

It was shown that the minimal set of parameters to be reported should include at least one of three volume overlap measures (i.e., generalized conformity index, Jaccard coefficient, or conformation number). High correlation between these parameters and scatter of the results was observed.

Conclusion

A combination of descriptive statistics, overlap measure, and statistical measure of agreement or reliability analysis is required to fully report the interrater variability in delineation.
Literature
1.
go back to reference Allozi R, Li XA, White J et al (2010) Tools for consensus analysis of experts’ contours for radiotherapy structure definitions. Radiother Oncol 97:572–578PubMedCrossRef Allozi R, Li XA, White J et al (2010) Tools for consensus analysis of experts’ contours for radiotherapy structure definitions. Radiother Oncol 97:572–578PubMedCrossRef
2.
go back to reference Altorjai G, Fotina I, Lütgendorf-Caucig C et al (2011) Cone-beam ct-based delineation of stereotactic lung targets: the influence of image modality and target size on interobserver variability. Int J Radiat Oncol Biol Phys [Epub ahead of print] Altorjai G, Fotina I, Lütgendorf-Caucig C et al (2011) Cone-beam ct-based delineation of stereotactic lung targets: the influence of image modality and target size on interobserver variability. Int J Radiat Oncol Biol Phys [Epub ahead of print]
3.
go back to reference Berthelet E, Liu MC, Agranovich A et al (2002) Computed tomography determination of prostate volume and maximum dimensions: a study of interobserver variability. Radiother Oncol 63:37–40PubMedCrossRef Berthelet E, Liu MC, Agranovich A et al (2002) Computed tomography determination of prostate volume and maximum dimensions: a study of interobserver variability. Radiother Oncol 63:37–40PubMedCrossRef
4.
go back to reference Breen SL, Publicover J, De Silva S et al (2007) Intraobserver and inter-observer variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 68:763–770PubMedCrossRef Breen SL, Publicover J, De Silva S et al (2007) Intraobserver and inter-observer variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 68:763–770PubMedCrossRef
5.
go back to reference Castro Pena P, Kirova YM, Campana F et al (2009) Anatomical, clinical and radiological delineation of target volumes in breast cancer radiotherapy planning: individual variability, questions and answers. Br J Radiol 82:595–599CrossRef Castro Pena P, Kirova YM, Campana F et al (2009) Anatomical, clinical and radiological delineation of target volumes in breast cancer radiotherapy planning: individual variability, questions and answers. Br J Radiol 82:595–599CrossRef
6.
go back to reference Dimopoulos JC, De Vos V, Berger D et al (2009) Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: application of the GYN GEC-ESTRO recommendations. Radiother Oncol 91:166–172PubMedCrossRef Dimopoulos JC, De Vos V, Berger D et al (2009) Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: application of the GYN GEC-ESTRO recommendations. Radiother Oncol 91:166–172PubMedCrossRef
7.
go back to reference Eliasziw M, Young SL, Woodbury MG et al (1994) Statistical methodology for the concurrent assessment of interrater and intrarater reliability: using goniometric measurements as an example. Phys Ther 74:777–788PubMed Eliasziw M, Young SL, Woodbury MG et al (1994) Statistical methodology for the concurrent assessment of interrater and intrarater reliability: using goniometric measurements as an example. Phys Ther 74:777–788PubMed
8.
go back to reference Fuller CD, Nijkamp J, Duppen JC et al (2011) Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting. Int J Radiat Oncol Biol Phys 79:481–489PubMedCrossRef Fuller CD, Nijkamp J, Duppen JC et al (2011) Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting. Int J Radiat Oncol Biol Phys 79:481–489PubMedCrossRef
9.
go back to reference Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187:357–366PubMedCrossRef Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187:357–366PubMedCrossRef
10.
go back to reference Giezen M, Kouwenhoven E, Scholten AN et al (2011) Magnetic resonance imaging- versus computed tomography-based target volume delineation of the glandular breast tissue in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys 81:804–811PubMedCrossRef Giezen M, Kouwenhoven E, Scholten AN et al (2011) Magnetic resonance imaging- versus computed tomography-based target volume delineation of the glandular breast tissue in breast-conserving therapy: an exploratory study. Int J Radiat Oncol Biol Phys 81:804–811PubMedCrossRef
11.
go back to reference Giraud P, Elles S, Helfre S et al (2002) Conformal radiotherapy for lung cancer: different delineation of the gross tumour volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 62:27–36PubMedCrossRef Giraud P, Elles S, Helfre S et al (2002) Conformal radiotherapy for lung cancer: different delineation of the gross tumour volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 62:27–36PubMedCrossRef
12.
go back to reference Goldner G, Dimopoulos J, Kirisits C, Pötter R (2009) Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single-institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 185:438–445PubMedCrossRef Goldner G, Dimopoulos J, Kirisits C, Pötter R (2009) Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single-institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 185:438–445PubMedCrossRef
13.
go back to reference Grabarz D, Panzarella T, Bezjak A et al (2011) Quantifying interobserver variation in target definition in Palliative Radiotherapy. Int J Radiat Oncol Biol Phys 80:1498–1504PubMedCrossRef Grabarz D, Panzarella T, Bezjak A et al (2011) Quantifying interobserver variation in target definition in Palliative Radiotherapy. Int J Radiat Oncol Biol Phys 80:1498–1504PubMedCrossRef
14.
go back to reference Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186:535–43 (Erratum: Strahlenther Onkol 2010;186:705) Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186:535–43 (Erratum: Strahlenther Onkol 2010;186:705)
15.
go back to reference International Commission on Radiation Units and Measurements. ICRU Report 62 (1999) Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU, Bethesda, MD, USA International Commission on Radiation Units and Measurements. ICRU Report 62 (1999) Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU, Bethesda, MD, USA
16.
go back to reference Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190PubMedCrossRef Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190PubMedCrossRef
17.
go back to reference Jansen EP, Nijkamp J, Gubanski M et al (2010) Interobserver variation of clinical target volume delineation in gastric cancer. Int J Radiat Oncol Biol Phys 77:1166–1170PubMedCrossRef Jansen EP, Nijkamp J, Gubanski M et al (2010) Interobserver variation of clinical target volume delineation in gastric cancer. Int J Radiat Oncol Biol Phys 77:1166–1170PubMedCrossRef
18.
go back to reference Kouwenhoven E, Giezen M, Struikmans H (2009) Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol 54:2863–2873PubMedCrossRef Kouwenhoven E, Giezen M, Struikmans H (2009) Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol 54:2863–2873PubMedCrossRef
19.
go back to reference Krengli M, Cannillo B, Turri L et al (2010) Target volume delineation for preoperative radiotherapy of rectal cancer: inter-observer variability and potential impact of FDG-PET/CT imaging. Technol Cancer Res Treat 9:393–398PubMed Krengli M, Cannillo B, Turri L et al (2010) Target volume delineation for preoperative radiotherapy of rectal cancer: inter-observer variability and potential impact of FDG-PET/CT imaging. Technol Cancer Res Treat 9:393–398PubMed
20.
go back to reference Lawton CA, Michalski J, El-Naqa I et al (2009) Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 74:377–382PubMedCrossRef Lawton CA, Michalski J, El-Naqa I et al (2009) Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 74:377–382PubMedCrossRef
21.
go back to reference Leunens G, Menten J, Weltens C et al (1993) Quality assessment of medical decision making in radiation oncology: variability in target volume delineation for brain tumours. Radiother Oncol 29:169–175PubMedCrossRef Leunens G, Menten J, Weltens C et al (1993) Quality assessment of medical decision making in radiation oncology: variability in target volume delineation for brain tumours. Radiother Oncol 29:169–175PubMedCrossRef
22.
go back to reference Li XA, Tai A, Arthur DW, Buchholz TA et al (2009) Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys 73:944–951PubMedCrossRef Li XA, Tai A, Arthur DW, Buchholz TA et al (2009) Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys 73:944–951PubMedCrossRef
23.
go back to reference Logue JP, Sharrock CL, Cowan RA et al (1998) Clinical variability of target volume description in conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 41:929–9231PubMedCrossRef Logue JP, Sharrock CL, Cowan RA et al (1998) Clinical variability of target volume description in conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 41:929–9231PubMedCrossRef
24.
go back to reference Louie AV, Rodrigues G, Olsthoorn J et al (2010) Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother Oncol 95:166–171PubMedCrossRef Louie AV, Rodrigues G, Olsthoorn J et al (2010) Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother Oncol 95:166–171PubMedCrossRef
25.
go back to reference Lütgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161PubMedCrossRef Lütgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161PubMedCrossRef
26.
go back to reference Metwally H, Courbon F, David I et al (2011) Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. Int J Radiat Oncol Biol Phys 80:793–799PubMedCrossRef Metwally H, Courbon F, David I et al (2011) Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. Int J Radiat Oncol Biol Phys 80:793–799PubMedCrossRef
27.
go back to reference Mitchell JR, Karlik SJ, Lee DH et al (1996) The variability of manual and computer assisted quantification of multiple sclerosis lesion volumes. Med Phys 23:85–97PubMedCrossRef Mitchell JR, Karlik SJ, Lee DH et al (1996) The variability of manual and computer assisted quantification of multiple sclerosis lesion volumes. Med Phys 23:85–97PubMedCrossRef
28.
go back to reference Njeh CF (2008) Tumor delineation: The weakest link in the search for accuracy in radiotherapy. J Med Phys 33:136–140PubMedCrossRef Njeh CF (2008) Tumor delineation: The weakest link in the search for accuracy in radiotherapy. J Med Phys 33:136–140PubMedCrossRef
29.
go back to reference Petersen RP, Truong PT, Kader HA et al (2007) Target volume delineation for partial breast radiotherapy planning: Clinical characteristics associated with low interobserver concordance. Int J Radiat Oncol Biol Phys 69:41–48PubMedCrossRef Petersen RP, Truong PT, Kader HA et al (2007) Target volume delineation for partial breast radiotherapy planning: Clinical characteristics associated with low interobserver concordance. Int J Radiat Oncol Biol Phys 69:41–48PubMedCrossRef
30.
go back to reference Pinkawa M, Holy R, Piroth MD et al (2010) Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18 F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 186:600–606PubMedCrossRef Pinkawa M, Holy R, Piroth MD et al (2010) Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18 F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 186:600–606PubMedCrossRef
31.
go back to reference Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187:479–484PubMedCrossRef Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187:479–484PubMedCrossRef
32.
go back to reference Rasch C, Barillot I, Remeijer P et al (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43:57–66PubMedCrossRef Rasch C, Barillot I, Remeijer P et al (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43:57–66PubMedCrossRef
33.
go back to reference Rasch C, Steenbakkers R, Herk M van (2005) Target definition in prostate, head, and neck. Semin Radiat Oncol 15:136–145PubMedCrossRef Rasch C, Steenbakkers R, Herk M van (2005) Target definition in prostate, head, and neck. Semin Radiat Oncol 15:136–145PubMedCrossRef
34.
go back to reference Rasch CR, Steenbakkers RJ, Fitton I et al (2010) Decreased 3D observer variation with matched CT-MRI, for target delineation in nasopharynx cancer. Radiat Oncol 5:21PubMedCrossRef Rasch CR, Steenbakkers RJ, Fitton I et al (2010) Decreased 3D observer variation with matched CT-MRI, for target delineation in nasopharynx cancer. Radiat Oncol 5:21PubMedCrossRef
35.
go back to reference Senan S, Koste J de, Samson M et al (1999) Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 53:247–255PubMedCrossRef Senan S, Koste J de, Samson M et al (1999) Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 53:247–255PubMedCrossRef
36.
go back to reference Smith WL, Lewis C, Bauman G et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67:1238–1247PubMedCrossRef Smith WL, Lewis C, Bauman G et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67:1238–1247PubMedCrossRef
37.
go back to reference Song W, Chiu B, Bauman G et al (2006) Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy. Int J Radiat Oncol Biol Phys 65:595–607PubMedCrossRef Song W, Chiu B, Bauman G et al (2006) Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy. Int J Radiat Oncol Biol Phys 65:595–607PubMedCrossRef
38.
go back to reference Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–434PubMedCrossRef Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–434PubMedCrossRef
39.
go back to reference Stock M, Dörr W, Stromberger C et al (2010) Investigations on parotid gland recovery after IMRT in head and neck tumor patients. Strahlenther Onkol 186:665–671PubMedCrossRef Stock M, Dörr W, Stromberger C et al (2010) Investigations on parotid gland recovery after IMRT in head and neck tumor patients. Strahlenther Onkol 186:665–671PubMedCrossRef
40.
go back to reference Stroom JC, Heijmen BJ (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83PubMedCrossRef Stroom JC, Heijmen BJ (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83PubMedCrossRef
41.
go back to reference Struikmans H, Wárlám-Rodenhuis C, Stam T et al (2005) Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation. Radiother Oncol 76:293–299PubMedCrossRef Struikmans H, Wárlám-Rodenhuis C, Stam T et al (2005) Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation. Radiother Oncol 76:293–299PubMedCrossRef
42.
go back to reference Tong S, Cardinal HN, McLoughlin RF et al (1998) Intra- and interobserver variability and reliability of prostate volume measurement via two-dimensional and three-dimensional ultrasound imaging. Ultrasound Med Biol 24:673–681PubMedCrossRef Tong S, Cardinal HN, McLoughlin RF et al (1998) Intra- and interobserver variability and reliability of prostate volume measurement via two-dimensional and three-dimensional ultrasound imaging. Ultrasound Med Biol 24:673–681PubMedCrossRef
43.
go back to reference Tyng CJ, Chojniak R, Pinto PN et al (2009) Conformal radiotherapy for lung cancer: interobservers’ variability in the definition of gross tumor volume between radiologists and radiotherapists. Radiat Oncol 4:28PubMedCrossRef Tyng CJ, Chojniak R, Pinto PN et al (2009) Conformal radiotherapy for lung cancer: interobservers’ variability in the definition of gross tumor volume between radiologists and radiotherapists. Radiat Oncol 4:28PubMedCrossRef
44.
go back to reference Usmani N, Sloboda R, Kamal W et al (2011) Can images obtained with high field strength magnetic resonance imaging reduce contouring variability of the prostate? Int J Radiat Oncol Biol Phys 80:728–734PubMedCrossRef Usmani N, Sloboda R, Kamal W et al (2011) Can images obtained with high field strength magnetic resonance imaging reduce contouring variability of the prostate? Int J Radiat Oncol Biol Phys 80:728–734PubMedCrossRef
45.
go back to reference Baardwijk A van, Bosmans G, Boersma et al (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68:771–778PubMedCrossRef Baardwijk A van, Bosmans G, Boersma et al (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68:771–778PubMedCrossRef
46.
go back to reference Mourik AM van, Elkhuizen PH, Minkema D et al (2010) Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines. Radiother Oncol 94:286–291PubMedCrossRef Mourik AM van, Elkhuizen PH, Minkema D et al (2010) Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines. Radiother Oncol 94:286–291PubMedCrossRef
47.
go back to reference Villeirs GM, Van Vaerenbergh K, Vakaet L et al (2005) Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol 181:424–430PubMedCrossRef Villeirs GM, Van Vaerenbergh K, Vakaet L et al (2005) Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol 181:424–430PubMedCrossRef
48.
go back to reference Vorwerk H, Beckmann G, Bremer M et al (2009) The delineation of target volumes for radiotherapy of lung cancer patients. Radiother Oncol 91:455–460PubMedCrossRef Vorwerk H, Beckmann G, Bremer M et al (2009) The delineation of target volumes for radiotherapy of lung cancer patients. Radiother Oncol 91:455–460PubMedCrossRef
49.
go back to reference Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol 179:21–30PubMedCrossRef Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol 179:21–30PubMedCrossRef
50.
go back to reference Weiss E, Richter S, Krauss T et al (2003) Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume. A comparison between gynaecologic and radiation oncologists. Radiother Oncol 67:87–95PubMedCrossRef Weiss E, Richter S, Krauss T et al (2003) Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume. A comparison between gynaecologic and radiation oncologists. Radiother Oncol 67:87–95PubMedCrossRef
51.
go back to reference Weiss E, Wu J, Sleeman W et al (2010) Clinical evaluation of soft tissue organ boundary visualization on cone-beam computed tomographic imaging. Int J Radiat Oncol Biol Phys 78:929–936PubMedCrossRef Weiss E, Wu J, Sleeman W et al (2010) Clinical evaluation of soft tissue organ boundary visualization on cone-beam computed tomographic imaging. Int J Radiat Oncol Biol Phys 78:929–936PubMedCrossRef
52.
go back to reference Weltens C, Menten J, Feron M et al (2001) Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiother Oncol 60:49–59PubMedCrossRef Weltens C, Menten J, Feron M et al (2001) Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiother Oncol 60:49–59PubMedCrossRef
53.
go back to reference White EA, Brock KK, Jaffray DA et al (2009) Inter-observer variability of prostate delineation on cone beam computerised tomography images. Clin Oncol 21:32–38CrossRef White EA, Brock KK, Jaffray DA et al (2009) Inter-observer variability of prostate delineation on cone beam computerised tomography images. Clin Oncol 21:32–38CrossRef
Metadata
Title
Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy
Authors
I. Fotina
C. Lütgendorf-Caucig
M. Stock
R. Pötter
D. Georg
Publication date
01-02-2012
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 2/2012
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-011-0027-6

Other articles of this Issue 2/2012

Strahlentherapie und Onkologie 2/2012 Go to the issue