Skip to main content
Top
Published in: Lasers in Medical Science 2/2020

01-03-2020 | Craniomandibular Dysfunction and Stress | Original Article

The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects

Authors: Alex de Freitas Rodrigues, Daniel de Oliveira Martins, Marucia Chacur, João Gualberto C. Luz

Published in: Lasers in Medical Science | Issue 2/2020

Login to get access

Abstract

This study analyzed the effects of photobiomodulation (PBM) with low-level laser therapy on nociceptive behavior and neuronal activity in the trigeminal nucleus after experimental unilateral temporomandibular joint (TMJ) disc injury. The animals were divided into 4 groups (n = 10 each): group 1, surgical injury of the articular disc and PBM; group 2, sham-operated subjected to PBM; group 3, surgical injury of the articular disc; and group 4, control (Naïve). Ten sessions of PBM were performed using GaAs laser with a wavelength of 904 nm, power of 75 W pico, average power of 0.043 W, area of the beam of 0.13 cm2, duration of the pulses of 60 nseg (in the frequency of 9500 Hz), energy density of 5.95 J/cm2, energy per point of 0.7 J, and power density of 333.8 mW/cm2, and the irradiation was done for 18 s per point. Neuropathic symptoms were evaluated using the von Frey test. Trigeminal ganglion samples underwent immunoblotting to examine the expression of substance P, vanilloid transient potential receptor of subtype-1 (TRPV-1), and peptide related to the calcitonin gene (CGRP). There was a total decrease in pain sensitivity after the second session of PBM in operated animals, and this decrease remains until the last session. There was a significant decrease in the expression of SP, TRPV-1, and CGRP after PBM. Photobiomodulation therapy was effective in reducing nociceptive behavior and trigeminal nucleus neuronal activity after TMJ disc injury.
Literature
1.
go back to reference Okeson JP, de Leeuw R (2011) Differential diagnosis of temporomandibular disorders and other orofacial pain disorders. Dent Clin N Am 55:105–120CrossRefPubMed Okeson JP, de Leeuw R (2011) Differential diagnosis of temporomandibular disorders and other orofacial pain disorders. Dent Clin N Am 55:105–120CrossRefPubMed
2.
go back to reference Luz JG, Maragno IC, Martin MC (1997) Characteristics of chief complaints of patients with temporomandibular disorders in a Brazilian population. J Oral Rehabil 24:240–243CrossRefPubMed Luz JG, Maragno IC, Martin MC (1997) Characteristics of chief complaints of patients with temporomandibular disorders in a Brazilian population. J Oral Rehabil 24:240–243CrossRefPubMed
3.
go back to reference Hilgenberg PB, Saldanha AD, Cunha CO, Rubo JH, Conti PC (2012) Temporomandibular disorders, otologic symptoms and depression levels in tinnitus patients. J Oral Rehabil 39:239–244CrossRefPubMed Hilgenberg PB, Saldanha AD, Cunha CO, Rubo JH, Conti PC (2012) Temporomandibular disorders, otologic symptoms and depression levels in tinnitus patients. J Oral Rehabil 39:239–244CrossRefPubMed
5.
go back to reference Sessle BJ (2000) Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 11:57–91CrossRefPubMed Sessle BJ (2000) Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 11:57–91CrossRefPubMed
6.
go back to reference Tominaga M (2010) Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1. Yakugaku Zasshi 130:289–294CrossRefPubMed Tominaga M (2010) Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1. Yakugaku Zasshi 130:289–294CrossRefPubMed
7.
go back to reference Seifi M, Ebadifar A, Kabiri S et al (2017) Comparative effectiveness of low level laser therapy and transcutaneous electric nerve stimulation on temporomandibular joint disorders. J Lasers Med Sci 8:S27–S31CrossRefPubMedCentralPubMed Seifi M, Ebadifar A, Kabiri S et al (2017) Comparative effectiveness of low level laser therapy and transcutaneous electric nerve stimulation on temporomandibular joint disorders. J Lasers Med Sci 8:S27–S31CrossRefPubMedCentralPubMed
8.
go back to reference Melis M, Di Giosia M, Zawawi KH (2012) Low level laser therapy for the treatment of temporomandibular disorders: a systematic review of the literature. Cranio 30:304–312CrossRefPubMed Melis M, Di Giosia M, Zawawi KH (2012) Low level laser therapy for the treatment of temporomandibular disorders: a systematic review of the literature. Cranio 30:304–312CrossRefPubMed
9.
go back to reference Bertolini GR, Artifon EL, Silva TS, Cunha DM, Vigo PR (2011) Low-level laser therapy, at 830 nm, for pain reduction in experimental model of rats with sciatica. Arq Neuropsiquiatr 69:356–359CrossRefPubMed Bertolini GR, Artifon EL, Silva TS, Cunha DM, Vigo PR (2011) Low-level laser therapy, at 830 nm, for pain reduction in experimental model of rats with sciatica. Arq Neuropsiquiatr 69:356–359CrossRefPubMed
10.
go back to reference de Oliveira Martins D, Martinez dos Santos F, Evany de Oliveira M, de Britto LR, Benedito Dias Lemos J, Chacur M (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30:480–486CrossRefPubMedCentralPubMed de Oliveira Martins D, Martinez dos Santos F, Evany de Oliveira M, de Britto LR, Benedito Dias Lemos J, Chacur M (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30:480–486CrossRefPubMedCentralPubMed
11.
go back to reference Carvalho CM, Lacerda JA, dos Santos Neto FP et al (2011) Evaluation of laser phototherapy in the inflammatory process of the rat’s TMJ induced by carrageenan. Photomed Laser Surg 29:245–254CrossRefPubMed Carvalho CM, Lacerda JA, dos Santos Neto FP et al (2011) Evaluation of laser phototherapy in the inflammatory process of the rat’s TMJ induced by carrageenan. Photomed Laser Surg 29:245–254CrossRefPubMed
12.
go back to reference Lemos GA, Rissi R, de Souza Pires IL et al (2016) Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med Sci 31:1051–1059CrossRefPubMed Lemos GA, Rissi R, de Souza Pires IL et al (2016) Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med Sci 31:1051–1059CrossRefPubMed
13.
go back to reference Bonjardim LR, da Silva AP, Gameiro GH, Tambeli CH, Veiga MC (2009) Nociceptive behavior induced by mustard oil injection into the temporomandibular joint is blocked by a peripheral non-opioid analgesic and a central opioid analgesic. Pharmacol Biochem Behav 9:321–326CrossRef Bonjardim LR, da Silva AP, Gameiro GH, Tambeli CH, Veiga MC (2009) Nociceptive behavior induced by mustard oil injection into the temporomandibular joint is blocked by a peripheral non-opioid analgesic and a central opioid analgesic. Pharmacol Biochem Behav 9:321–326CrossRef
14.
go back to reference Barretto SR, de Melo GC, dos Santos JC et al (2013) Evaluation of anti-nociceptive and anti-inflammatory activity of low-level laser therapy on temporomandibular joint inflammation in rodents. J Photochem Photobiol B 129:135–142CrossRefPubMed Barretto SR, de Melo GC, dos Santos JC et al (2013) Evaluation of anti-nociceptive and anti-inflammatory activity of low-level laser therapy on temporomandibular joint inflammation in rodents. J Photochem Photobiol B 129:135–142CrossRefPubMed
15.
go back to reference Hutchins B, Spears R, Hinton RJ, Harper RP (2000) Calcitonin gene-related peptide and substance P immunoreactivity in rat trigeminal ganglia and brainstem following adjuvant-induced inflammation of the temporomandibular joint. Arch Oral Biol 45:335–345CrossRefPubMed Hutchins B, Spears R, Hinton RJ, Harper RP (2000) Calcitonin gene-related peptide and substance P immunoreactivity in rat trigeminal ganglia and brainstem following adjuvant-induced inflammation of the temporomandibular joint. Arch Oral Biol 45:335–345CrossRefPubMed
16.
go back to reference Hartwig AC, Mathias SI, Law AS, Gebhart GF (2003) Characterization and opioid modulation of inflammatory temporomandibular joint pain in the rat. J Oral Maxillofac Surg 61:1302–1309CrossRefPubMed Hartwig AC, Mathias SI, Law AS, Gebhart GF (2003) Characterization and opioid modulation of inflammatory temporomandibular joint pain in the rat. J Oral Maxillofac Surg 61:1302–1309CrossRefPubMed
17.
go back to reference Goulart AC, Correia FA, Sousa SC, Luz JG (2005) Study of the inflammatory process induced by injection of carrageenan or formalin in the rat temporomandibular joint. Braz Oral Res 9:99–105CrossRef Goulart AC, Correia FA, Sousa SC, Luz JG (2005) Study of the inflammatory process induced by injection of carrageenan or formalin in the rat temporomandibular joint. Braz Oral Res 9:99–105CrossRef
18.
go back to reference Embree MC, Iwaoka GM, Kong D et al (2015) Soft tissue ossification and condylar cartilage degeneration following TMJ disc perforation in a rabbit pilot study. Osteoarthr Cartil 23:629–639CrossRef Embree MC, Iwaoka GM, Kong D et al (2015) Soft tissue ossification and condylar cartilage degeneration following TMJ disc perforation in a rabbit pilot study. Osteoarthr Cartil 23:629–639CrossRef
19.
go back to reference Kartha S, Zhou T, Granquist EJ, Winkelstein BA (2016) Development of a rat model of mechanically induced tunable pain and associated temporomandibular joint responses. J Oral Maxillofac Surg 74:54.e1–54.10CrossRef Kartha S, Zhou T, Granquist EJ, Winkelstein BA (2016) Development of a rat model of mechanically induced tunable pain and associated temporomandibular joint responses. J Oral Maxillofac Surg 74:54.e1–54.10CrossRef
20.
go back to reference de A Tréz T (2010) Refining animal experiments: the first Brazilian regulation on animal experimentation. Altern Lab Anim 38:239–244CrossRef de A Tréz T (2010) Refining animal experiments: the first Brazilian regulation on animal experimentation. Altern Lab Anim 38:239–244CrossRef
21.
go back to reference Toledo LG, Cavalcanti SC, Correa L, Luz JG (2014) Effects of injury or removal of the articular disc on maxillomandibular growth in young rats. J Oral Maxillofac Surg 72:2140–2147CrossRefPubMed Toledo LG, Cavalcanti SC, Correa L, Luz JG (2014) Effects of injury or removal of the articular disc on maxillomandibular growth in young rats. J Oral Maxillofac Surg 72:2140–2147CrossRefPubMed
22.
go back to reference Martins DO, Dos Santos FM, Ciena AP et al (2017) Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers Med Sci 32:833–840CrossRefPubMed Martins DO, Dos Santos FM, Ciena AP et al (2017) Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers Med Sci 32:833–840CrossRefPubMed
23.
go back to reference Martins DO, Santos FM, Britto LR, Lemos JB, Chacur M (2017) Neurochemical effects of photobiostimulation in the trigeminal ganglion after inferior alveolar nerve injury. J Biol Regul Homeost Agents 31:147–152PubMed Martins DO, Santos FM, Britto LR, Lemos JB, Chacur M (2017) Neurochemical effects of photobiostimulation in the trigeminal ganglion after inferior alveolar nerve injury. J Biol Regul Homeost Agents 31:147–152PubMed
24.
go back to reference Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, vol 887, 3rd edn. W.H. Freeman and Co, New York Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, vol 887, 3rd edn. W.H. Freeman and Co, New York
25.
go back to reference Sarlani E, Grace EG, Reynolds MA, Greenspan JD (2004) Evidence for up-regulated central nociceptive processing in patients with masticatory myofascial pain. J Orofac Pain 18:41–55PubMed Sarlani E, Grace EG, Reynolds MA, Greenspan JD (2004) Evidence for up-regulated central nociceptive processing in patients with masticatory myofascial pain. J Orofac Pain 18:41–55PubMed
26.
go back to reference Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29:785–787CrossRefPubMed Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29:785–787CrossRefPubMed
27.
go back to reference Palmeira CC, Ashmawi HA, Posso Ide P (2011) Sex and pain perception and analgesia. Rev Bras Anestesiol 61:814–828CrossRefPubMed Palmeira CC, Ashmawi HA, Posso Ide P (2011) Sex and pain perception and analgesia. Rev Bras Anestesiol 61:814–828CrossRefPubMed
29.
go back to reference Chagas LR, Silva JA Jr, de Almeida Pires J, Costa MS (2015) Expression of mPGES-1 and IP mRNA is reduced by LLLT in both subplantar and brain tissues in the model of peripheral inflammation induced by carrageenan. Lasers Med Sci 30:83–88CrossRefPubMed Chagas LR, Silva JA Jr, de Almeida Pires J, Costa MS (2015) Expression of mPGES-1 and IP mRNA is reduced by LLLT in both subplantar and brain tissues in the model of peripheral inflammation induced by carrageenan. Lasers Med Sci 30:83–88CrossRefPubMed
30.
go back to reference Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325CrossRefPubMed Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg 28:291–325CrossRefPubMed
31.
go back to reference Jacobs R, Wu CH, Van Loven K, Desnyder M, Kolenaar B, Van Steenberghed D (2002) Methodology of oral sensory tests. J Oral Rehabil 29:720–730CrossRefPubMed Jacobs R, Wu CH, Van Loven K, Desnyder M, Kolenaar B, Van Steenberghed D (2002) Methodology of oral sensory tests. J Oral Rehabil 29:720–730CrossRefPubMed
32.
go back to reference Li W, Long X, Jiang S, Li Y, Fang W (2015) Histamine and substance P in synovial fluid of patients with temporomandibular disorders. J Oral Rehabil 42:363–369CrossRefPubMed Li W, Long X, Jiang S, Li Y, Fang W (2015) Histamine and substance P in synovial fluid of patients with temporomandibular disorders. J Oral Rehabil 42:363–369CrossRefPubMed
33.
go back to reference Neubert JK, Maidment NT, Matsuka Y, Adelson DW, Kruger L, Spigelman I (2000) Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res 871:181–191CrossRefPubMed Neubert JK, Maidment NT, Matsuka Y, Adelson DW, Kruger L, Spigelman I (2000) Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res 871:181–191CrossRefPubMed
34.
go back to reference Denadai-Souza A, Cenac N, Casatti CA et al (2010) PAR(2) and temporomandibular joint inflammation in the rat. J Dent Res 89:1123–1128CrossRefPubMed Denadai-Souza A, Cenac N, Casatti CA et al (2010) PAR(2) and temporomandibular joint inflammation in the rat. J Dent Res 89:1123–1128CrossRefPubMed
35.
go back to reference Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313CrossRefPubMed Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313CrossRefPubMed
36.
go back to reference Walker KM, Urban L, Medhurst SJ et al (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62CrossRefPubMed Walker KM, Urban L, Medhurst SJ et al (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62CrossRefPubMed
37.
go back to reference Durham PL, Garrett FG (2010) Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. TOPAINJ 3:3–13 Durham PL, Garrett FG (2010) Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. TOPAINJ 3:3–13
38.
go back to reference Koop LK, Hawkins JL, Cornelison LE, Durham PL (2017) Central role of protein kinase A in promoting trigeminal nociception in an in vivo model of temporomandibular disorders. J Oral Facial Pain Headache 31:264–274CrossRefPubMedCentralPubMed Koop LK, Hawkins JL, Cornelison LE, Durham PL (2017) Central role of protein kinase A in promoting trigeminal nociception in an in vivo model of temporomandibular disorders. J Oral Facial Pain Headache 31:264–274CrossRefPubMedCentralPubMed
Metadata
Title
The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects
Authors
Alex de Freitas Rodrigues
Daniel de Oliveira Martins
Marucia Chacur
João Gualberto C. Luz
Publication date
01-03-2020
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 2/2020
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02842-0

Other articles of this Issue 2/2020

Lasers in Medical Science 2/2020 Go to the issue