Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | COVID-19 | Research

Machine learning-based mortality prediction models for smoker COVID-19 patients

Authors: Ali Sharifi-Kia, Azin Nahvijou, Abbas Sheikhtaheri

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

The large number of SARS-Cov-2 cases during the COVID-19 global pandemic has burdened healthcare systems and created a shortage of resources and services. In recent years, mortality prediction models have shown a potential in alleviating this issue; however, these models are susceptible to biases in specific subpopulations with different risks of mortality, such as patients with prior history of smoking. The current study aims to develop a machine learning-based mortality prediction model for COVID-19 patients that have a history of smoking in the Iranian population.

Methods

A retrospective study was conducted across six medical centers between 18 and 2020 and 15 March 2022, comprised of 678 CT scans and laboratory-confirmed COVID-19 patients that had a history of smoking. Multiple machine learning models were developed using 10-fold cross-validation. The target variable was in-hospital mortality and input features included patient demographics, levels of care, vital signs, medications, and comorbidities. Two sets of models were developed for at-admission and post-admission predictions. Subsequently, the top five prediction models were selected from at-admission models and post-admission models and their probabilities were calibrated.

Results

The in-hospital mortality rate for smoker COVID-19 patients was 20.1%. For “at admission” models, the best-calibrated model was XGBoost which yielded an accuracy of 87.5% and F1 score of 86.2%. For the “post-admission” models, XGBoost also outperformed the rest with an accuracy of 90.5% and F1 score of 89.9%. Active smoking was among the most important features in patients’ mortality prediction.

Conclusion

Our machine learning-based mortality prediction models have the potential to be adapted for improving the management of smoker COVID-19 patients and predicting patients’ chance of survival.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–8.CrossRef Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–8.CrossRef
2.
go back to reference Huang X, Wei F, Hu L, Wen L, Chen K. Epidemiology and clinical characteristics of COVID-19. Arch Iran Med. 2020;23(4):268–71.PubMedCrossRef Huang X, Wei F, Hu L, Wen L, Chen K. Epidemiology and clinical characteristics of COVID-19. Arch Iran Med. 2020;23(4):268–71.PubMedCrossRef
3.
go back to reference Yang X, Yu Y, Xu J, Shu H, Xia Ja, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020;8(5):475–81.PubMedPubMedCentralCrossRef Yang X, Yu Y, Xu J, Shu H, Xia Ja, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020;8(5):475–81.PubMedPubMedCentralCrossRef
4.
go back to reference Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based on country-level data. BMJ open. 2020;10(11):e043560.PubMedPubMedCentralCrossRef Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based on country-level data. BMJ open. 2020;10(11):e043560.PubMedPubMedCentralCrossRef
5.
6.
go back to reference Larsen JR, Martin MR, Martin JD, Kuhn P, Hicks JB. Modeling the onset of symptoms of COVID-19. Front Public Health. 2020;8(473):134–42. Larsen JR, Martin MR, Martin JD, Kuhn P, Hicks JB. Modeling the onset of symptoms of COVID-19. Front Public Health. 2020;8(473):134–42.
7.
go back to reference Cheng H-Y, Jian S-W, Liu D-P, Ng T-C, Huang W-T, Lin H-H. Team ftTC-OI: contact tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at different exposure periods before and after Symptom Onset. JAMA Intern Med. 2020;180(9):1156–63.PubMedPubMedCentralCrossRef Cheng H-Y, Jian S-W, Liu D-P, Ng T-C, Huang W-T, Lin H-H. Team ftTC-OI: contact tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at different exposure periods before and after Symptom Onset. JAMA Intern Med. 2020;180(9):1156–63.PubMedPubMedCentralCrossRef
8.
go back to reference WHO COVID-19. Dashboard [https://covid19.who.int]. WHO COVID-19. Dashboard [https://​covid19.​who.​int].
9.
go back to reference Clift AK, von Ende A, Tan PS, Sallis HM, Lindson N, Coupland CAC, Munafò MR, Aveyard P, Hippisley-Cox J, Hopewell JC. Smoking and COVID-19 outcomes: an observational and mendelian randomisation study using the UK Biobank cohort. Thorax. 2022;77(1):65.PubMedCrossRef Clift AK, von Ende A, Tan PS, Sallis HM, Lindson N, Coupland CAC, Munafò MR, Aveyard P, Hippisley-Cox J, Hopewell JC. Smoking and COVID-19 outcomes: an observational and mendelian randomisation study using the UK Biobank cohort. Thorax. 2022;77(1):65.PubMedCrossRef
10.
go back to reference Lowe KE, Zein J, Hatipoglu U, Attaway A. Association of smoking and cumulative pack-year exposure with COVID-19 outcomes in the Cleveland clinic COVID-19 registry. JAMA Intern Med. 2021;181(5):709–11.PubMedPubMedCentralCrossRef Lowe KE, Zein J, Hatipoglu U, Attaway A. Association of smoking and cumulative pack-year exposure with COVID-19 outcomes in the Cleveland clinic COVID-19 registry. JAMA Intern Med. 2021;181(5):709–11.PubMedPubMedCentralCrossRef
11.
go back to reference Bellan M, Patti G, Hayden E, Azzolina D, Pirisi M, Acquaviva A, Aimaretti G, Aluffi Valletti P, Angilletta R, Arioli R, et al. Fatality rate and predictors of mortality in an italian cohort of hospitalized COVID-19 patients. Sci Rep. 2020;10(1):207–16.CrossRef Bellan M, Patti G, Hayden E, Azzolina D, Pirisi M, Acquaviva A, Aimaretti G, Aluffi Valletti P, Angilletta R, Arioli R, et al. Fatality rate and predictors of mortality in an italian cohort of hospitalized COVID-19 patients. Sci Rep. 2020;10(1):207–16.CrossRef
12.
go back to reference Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based on country-level data. BMJ open. 2020;10(11):435–60.CrossRef Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based on country-level data. BMJ open. 2020;10(11):435–60.CrossRef
13.
go back to reference Scanlon PD, Connett JE, Waller LA, Altose MD, Bailey WC, Sonia Buist A, e Lung Health Study Research Group DPTft. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease: the Lung Health Study. Am J Respir Crit. 2000;161(2):381–90.CrossRef Scanlon PD, Connett JE, Waller LA, Altose MD, Bailey WC, Sonia Buist A, e Lung Health Study Research Group DPTft. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease: the Lung Health Study. Am J Respir Crit. 2000;161(2):381–90.CrossRef
14.
go back to reference Halasz G, Sperti M, Villani M, Michelucci U, Agostoni P, Biagi A, Rossi L, Botti A, Mari C, Maccarini M, et al. A machine learning approach for mortality prediction in COVID-19 pneumonia: development and evaluation of the Piacenza score. J Med Internet Res. 2021;23(5):29058.CrossRef Halasz G, Sperti M, Villani M, Michelucci U, Agostoni P, Biagi A, Rossi L, Botti A, Mari C, Maccarini M, et al. A machine learning approach for mortality prediction in COVID-19 pneumonia: development and evaluation of the Piacenza score. J Med Internet Res. 2021;23(5):29058.CrossRef
15.
go back to reference Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M. An interpretable mortality prediction model for COVID-19 patients. Nat Mach. 2020;2(5):283–8. Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M. An interpretable mortality prediction model for COVID-19 patients. Nat Mach. 2020;2(5):283–8.
16.
go back to reference Parchure P, Joshi H, Dharmarajan K, Freeman R, Reich DL, Mazumdar M, Timsina P, Kia A. Development and validation of a machine learning-based prediction model for near-term in-hospital mortality among patients with COVID-19. BMJ Support Palliat Care 2020. Parchure P, Joshi H, Dharmarajan K, Freeman R, Reich DL, Mazumdar M, Timsina P, Kia A. Development and validation of a machine learning-based prediction model for near-term in-hospital mortality among patients with COVID-19. BMJ Support Palliat Care 2020.
17.
go back to reference Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–60.PubMedCrossRef Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–60.PubMedCrossRef
19.
go back to reference Booth AL, Abels E, McCaffrey P. Development of a prognostic model for mortality in COVID-19 infection using machine learning. Mod. 2021;34(3):522–31. Booth AL, Abels E, McCaffrey P. Development of a prognostic model for mortality in COVID-19 infection using machine learning. Mod. 2021;34(3):522–31.
20.
go back to reference Zarei J, Jamshidnezhad A, Haddadzadeh Shoushtari M, Mohammad Hadianfard A, Cheraghi M, Sheikhtaheri A. Machine learning models to Predict In-Hospital mortality among inpatients with COVID-19: underestimation and overestimation Bias Analysis in Subgroup populations. J Healthc Eng. 2022;2022:1644910.PubMedPubMedCentralCrossRef Zarei J, Jamshidnezhad A, Haddadzadeh Shoushtari M, Mohammad Hadianfard A, Cheraghi M, Sheikhtaheri A. Machine learning models to Predict In-Hospital mortality among inpatients with COVID-19: underestimation and overestimation Bias Analysis in Subgroup populations. J Healthc Eng. 2022;2022:1644910.PubMedPubMedCentralCrossRef
21.
go back to reference Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics. 2020;52(4):200–2.PubMedPubMedCentralCrossRef Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics. 2020;52(4):200–2.PubMedPubMedCentralCrossRef
22.
go back to reference Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine learning method for image-based diagnosis of COVID-19. PLoS ONE. 2020;15(6):235–54.CrossRef Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine learning method for image-based diagnosis of COVID-19. PLoS ONE. 2020;15(6):235–54.CrossRef
23.
go back to reference Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Algorithms. 2020;13(10):249.CrossRef Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM. Covid-19 outbreak prediction with machine learning. Algorithms. 2020;13(10):249.CrossRef
24.
go back to reference Patel D, Kher V, Desai B, Lei X, Cen S, Nanda N, Gholamrezanezhad A, Duddalwar V, Varghese B, Oberai AA. Machine learning based predictors for COVID-19 disease severity. Sci Rep. 2021;11(1):4673.PubMedPubMedCentralCrossRef Patel D, Kher V, Desai B, Lei X, Cen S, Nanda N, Gholamrezanezhad A, Duddalwar V, Varghese B, Oberai AA. Machine learning based predictors for COVID-19 disease severity. Sci Rep. 2021;11(1):4673.PubMedPubMedCentralCrossRef
25.
go back to reference An C, Lim H, Kim D-W, Chang JH, Choi YJ, Kim SW. Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide korean cohort study. Sci Rep. 2020;10(1):18716.PubMedPubMedCentralCrossRef An C, Lim H, Kim D-W, Chang JH, Choi YJ, Kim SW. Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide korean cohort study. Sci Rep. 2020;10(1):18716.PubMedPubMedCentralCrossRef
26.
go back to reference Chen Y, Linli Z, Lei Y, Yang Y, Liu Z, Xia Y, Liang Y, Zhu H, Guo S. Risk factors for mortality in critically ill patients with COVID-19 in Huanggang, China: a single-center multivariate pattern analysis. J Med Virol. 2021;93(4):2046–55.PubMedCrossRef Chen Y, Linli Z, Lei Y, Yang Y, Liu Z, Xia Y, Liang Y, Zhu H, Guo S. Risk factors for mortality in critically ill patients with COVID-19 in Huanggang, China: a single-center multivariate pattern analysis. J Med Virol. 2021;93(4):2046–55.PubMedCrossRef
27.
go back to reference Chen B, Gu H-Q, Liu Y, Zhang G, Yang H, Hu H, Lu C, Li Y, Wang L, Liu Y, et al. A model to predict the risk of mortality in severely ill COVID-19 patients. Comput Struct Biotechnol J. 2021;19:1694–700.PubMedPubMedCentralCrossRef Chen B, Gu H-Q, Liu Y, Zhang G, Yang H, Hu H, Lu C, Li Y, Wang L, Liu Y, et al. A model to predict the risk of mortality in severely ill COVID-19 patients. Comput Struct Biotechnol J. 2021;19:1694–700.PubMedPubMedCentralCrossRef
28.
go back to reference Ghafari M, Kadivar A, Katzourakis A. Excess deaths associated with the iranian COVID-19 epidemic: a province-level analysis. Int J Infect Dis. 2021;107:101–15.PubMedPubMedCentralCrossRef Ghafari M, Kadivar A, Katzourakis A. Excess deaths associated with the iranian COVID-19 epidemic: a province-level analysis. Int J Infect Dis. 2021;107:101–15.PubMedPubMedCentralCrossRef
29.
go back to reference Murphy A, Abdi Z, Harirchi I, McKee M, Ahmadnezhad E. Economic sanctions and Iran’s capacity to respond to COVID-19. Lancet Public Health. 2020;5(5):e254.PubMedPubMedCentralCrossRef Murphy A, Abdi Z, Harirchi I, McKee M, Ahmadnezhad E. Economic sanctions and Iran’s capacity to respond to COVID-19. Lancet Public Health. 2020;5(5):e254.PubMedPubMedCentralCrossRef
30.
go back to reference Jee Y, Kim Y-J, Oh J, Kim Y-J, Ha E-H, Jo I. A COVID-19 mortality prediction model for korean patients using nationwide korean disease control and prevention agency database. Sci Rep. 2022;12(1):3311.PubMedPubMedCentralCrossRef Jee Y, Kim Y-J, Oh J, Kim Y-J, Ha E-H, Jo I. A COVID-19 mortality prediction model for korean patients using nationwide korean disease control and prevention agency database. Sci Rep. 2022;12(1):3311.PubMedPubMedCentralCrossRef
31.
go back to reference Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: a review. Inf Med Unlocked. 2021;24:100564.CrossRef Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: a review. Inf Med Unlocked. 2021;24:100564.CrossRef
32.
go back to reference Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.CrossRef Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.CrossRef
33.
go back to reference Sheikhtaheri A, Zarkesh M, Moradi R, Kermani F. Prediction of neonatal deaths in NICUs: development and validation of machine learning models. BMC Med Inf Decis Mak. 2021;21(1):1–14. Sheikhtaheri A, Zarkesh M, Moradi R, Kermani F. Prediction of neonatal deaths in NICUs: development and validation of machine learning models. BMC Med Inf Decis Mak. 2021;21(1):1–14.
34.
go back to reference Josephus BO, Nawir AH, Wijaya E, Moniaga JV, Ohyver M. Predict mortality in patients infected with COVID-19 Virus based on observed characteristics of the patient using logistic regression. Procedia Comput Sci. 2021;179:871–7.PubMedPubMedCentralCrossRef Josephus BO, Nawir AH, Wijaya E, Moniaga JV, Ohyver M. Predict mortality in patients infected with COVID-19 Virus based on observed characteristics of the patient using logistic regression. Procedia Comput Sci. 2021;179:871–7.PubMedPubMedCentralCrossRef
36.
go back to reference Morell-Garcia D, Ramos-Chavarino D, Bauça JM, del Argente P, Ballesteros-Vizoso MA, Garcia de Guadiana-Romualdo L, Gomez-Cobo C, Pou JA, Amezaga-Menéndez R, Alonso-Fernandez A. Urine biomarkers for the prediction of mortality in COVID-19 hospitalized patients. Sci Rep. 2021;11(1):1–13.CrossRef Morell-Garcia D, Ramos-Chavarino D, Bauça JM, del Argente P, Ballesteros-Vizoso MA, Garcia de Guadiana-Romualdo L, Gomez-Cobo C, Pou JA, Amezaga-Menéndez R, Alonso-Fernandez A. Urine biomarkers for the prediction of mortality in COVID-19 hospitalized patients. Sci Rep. 2021;11(1):1–13.CrossRef
37.
go back to reference Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–31.PubMedCrossRef Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–31.PubMedCrossRef
38.
go back to reference Karaismailoglu E, Karaismailoglu S. Two novel nomograms for predicting the risk of hospitalization or mortality due to COVID-19 by the naïve bayesian classifier method. J Med Virol. 2021;93(5):3194–201.PubMedPubMedCentralCrossRef Karaismailoglu E, Karaismailoglu S. Two novel nomograms for predicting the risk of hospitalization or mortality due to COVID-19 by the naïve bayesian classifier method. J Med Virol. 2021;93(5):3194–201.PubMedPubMedCentralCrossRef
39.
go back to reference Agbelusi O, Olayemi OC. Prediction of mortality rate of COVID-19 patients using machine learning techniques in nigeria. Int J Comput Sci Softw Eng. 2020;9(5):30–4.CrossRef Agbelusi O, Olayemi OC. Prediction of mortality rate of COVID-19 patients using machine learning techniques in nigeria. Int J Comput Sci Softw Eng. 2020;9(5):30–4.CrossRef
40.
go back to reference Cheng J, Greiner R. Comparing bayesian network classifiers. arXiv preprint arXiv:13016684 2013. Cheng J, Greiner R. Comparing bayesian network classifiers. arXiv preprint arXiv:13016684 2013.
41.
go back to reference Jensen FV. An introduction to bayesian networks. Volume 210. UCL press London; 1996. Jensen FV. An introduction to bayesian networks. Volume 210. UCL press London; 1996.
42.
go back to reference Singh V, Poonia RC, Kumar S, Dass P, Agarwal P, Bhatnagar V, Raja L. Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine. J Discrete Math Sci Crypt. 2020;23(8):1583–97. Singh V, Poonia RC, Kumar S, Dass P, Agarwal P, Bhatnagar V, Raja L. Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine. J Discrete Math Sci Crypt. 2020;23(8):1583–97.
43.
go back to reference Suthaharan S. Support Vector Machine. In: Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning Edited by Suthaharan S. Boston, MA: Springer US; 2016: 207–235. Suthaharan S. Support Vector Machine. In: Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning Edited by Suthaharan S. Boston, MA: Springer US; 2016: 207–235.
44.
go back to reference Bhavsar H, Ganatra A. A comparative study of training algorithms for supervised machine learning. Int J Soft Comput Eng (IJSCE). 2012;2(4):2231–307. Bhavsar H, Ganatra A. A comparative study of training algorithms for supervised machine learning. Int J Soft Comput Eng (IJSCE). 2012;2(4):2231–307.
45.
go back to reference Sheikhtaheri A, Orooji A, Pazouki A, Beitollahi M. A clinical decision support system for predicting the early complications of one-anastomosis gastric bypass surgery. Obesity Surgery. 2019;29(7): 2276–86. Sheikhtaheri A, Orooji A, Pazouki A, Beitollahi M. A clinical decision support system for predicting the early complications of one-anastomosis gastric bypass surgery. Obesity Surgery. 2019;29(7): 2276–86.
46.
go back to reference Khan RU, Almakdi S, Alshehri M, Kumar R, Ali I, Hussain SM, Haq AU, Khan I, Ullah A, Uddin MI. Probabilistic Approach to COVID-19 Data Analysis and forecasting future outbreaks using a Multi-Layer Perceptron neural network. Diagnostics. 2022;12(10):2539.PubMedPubMedCentralCrossRef Khan RU, Almakdi S, Alshehri M, Kumar R, Ali I, Hussain SM, Haq AU, Khan I, Ullah A, Uddin MI. Probabilistic Approach to COVID-19 Data Analysis and forecasting future outbreaks using a Multi-Layer Perceptron neural network. Diagnostics. 2022;12(10):2539.PubMedPubMedCentralCrossRef
47.
go back to reference Mostafa S, Azam O, Hadi K-A. Comparing of Data Mining Techniques for Predicting in-hospital mortality among patients with COVID-19. J Biostatistics Epidemiol 2021, 7(2). Mostafa S, Azam O, Hadi K-A. Comparing of Data Mining Techniques for Predicting in-hospital mortality among patients with COVID-19. J Biostatistics Epidemiol 2021, 7(2).
48.
go back to reference Akkaya B, Çolakoğlu N. Comparison of multi-class classification algorithms. on Early Diagnosis of Heart Diseases; 2019. Akkaya B, Çolakoğlu N. Comparison of multi-class classification algorithms. on Early Diagnosis of Heart Diseases; 2019.
49.
go back to reference Elhazmi A, Al-Omari A, Sallam H, Mufti HN, Rabie AA, Alshahrani M, Mady A, Alghamdi A, Altalaq A, Azzam MH, et al. Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. J Infect Public Health. 2022;15(7):826–34.PubMedPubMedCentralCrossRef Elhazmi A, Al-Omari A, Sallam H, Mufti HN, Rabie AA, Alshahrani M, Mady A, Alghamdi A, Altalaq A, Azzam MH, et al. Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. J Infect Public Health. 2022;15(7):826–34.PubMedPubMedCentralCrossRef
50.
go back to reference Huyut MT, Üstündağ H. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: a retrospective observational study. Med Gas Res. 2022;12(2):60–6.PubMedCrossRef Huyut MT, Üstündağ H. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: a retrospective observational study. Med Gas Res. 2022;12(2):60–6.PubMedCrossRef
51.
go back to reference Cornelius E, Akman O, Hrozencik D. COVID-19 mortality prediction using machine learning-integrated Random Forest Algorithm under varying patient Frailty. Mathematics. 2021;9(17):2043.CrossRef Cornelius E, Akman O, Hrozencik D. COVID-19 mortality prediction using machine learning-integrated Random Forest Algorithm under varying patient Frailty. Mathematics. 2021;9(17):2043.CrossRef
52.
go back to reference Tezza F, Lorenzoni G, Azzolina D, Barbar S, Leone LAC, Gregori D. Predicting in-hospital mortality of patients with COVID-19 using machine learning techniques. J Pers Med. 2021;11(5):343–52.PubMedPubMedCentralCrossRef Tezza F, Lorenzoni G, Azzolina D, Barbar S, Leone LAC, Gregori D. Predicting in-hospital mortality of patients with COVID-19 using machine learning techniques. J Pers Med. 2021;11(5):343–52.PubMedPubMedCentralCrossRef
53.
go back to reference Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front public health. 2020;8:357.PubMedPubMedCentralCrossRef Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health prediction using boosted random forest algorithm. Front public health. 2020;8:357.PubMedPubMedCentralCrossRef
54.
go back to reference Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed Signal Process Control. 2019;52:456–62.CrossRef Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed Signal Process Control. 2019;52:456–62.CrossRef
55.
go back to reference Jaleel RA, Burhan IM, Jalookh AM. A Proposed Model for Prediction of COVID-19 Depend on K-Nearest Neighbors Classifier:Iraq Case Study. In: 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE): 12–13 June 2021 2021; 2021: 1–6. Jaleel RA, Burhan IM, Jalookh AM. A Proposed Model for Prediction of COVID-19 Depend on K-Nearest Neighbors Classifier:Iraq Case Study. In: 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE): 12–13 June 2021 2021; 2021: 1–6.
56.
go back to reference Devi EA, Athappan V, Rajendran RR, Devi EA, Emayavaramban G, Sriragavi S, Sivaramkrishnan M. A Diagnostic Study on Prediction of Covid-19 by Symptoms Using Machine Learning. In: 2022 International Conference on Electronics and Renewable Systems (ICEARS): 16–18 March 2022 2022; 2022: 1416–1421. Devi EA, Athappan V, Rajendran RR, Devi EA, Emayavaramban G, Sriragavi S, Sivaramkrishnan M. A Diagnostic Study on Prediction of Covid-19 by Symptoms Using Machine Learning. In: 2022 International Conference on Electronics and Renewable Systems (ICEARS): 16–18 March 2022 2022; 2022: 1416–1421.
57.
go back to reference Luo J, Zhang Z, Fu Y, Rao F. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. Results in Physics. 2021;27:104462.PubMedPubMedCentralCrossRef Luo J, Zhang Z, Fu Y, Rao F. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. Results in Physics. 2021;27:104462.PubMedPubMedCentralCrossRef
58.
go back to reference Yadaw AS, Li YC, Bose S, Iyengar R, Bunyavanich S, Pandey G. Clinical predictors of COVID-19 mortality. medRxiv 2020. Yadaw AS, Li YC, Bose S, Iyengar R, Bunyavanich S, Pandey G. Clinical predictors of COVID-19 mortality. medRxiv 2020.
59.
go back to reference Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T. Xgboost: extreme gradient boosting. R package version 04 – 2. 2015;1(4):1–4. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T. Xgboost: extreme gradient boosting. R package version 04 – 2. 2015;1(4):1–4.
60.
go back to reference Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017, 30. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017, 30.
61.
go back to reference Shaban WM, Rabie AH, Saleh AI, Abo-Elsoud MA. A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. Knowl Based Syst. 2020;205:106270.PubMedPubMedCentralCrossRef Shaban WM, Rabie AH, Saleh AI, Abo-Elsoud MA. A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. Knowl Based Syst. 2020;205:106270.PubMedPubMedCentralCrossRef
62.
go back to reference Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, Prior F, Yu F Jr. Role of machine learning techniques to Tackle the COVID-19 Crisis: systematic review. JMIR Med Inform. 2021;9(1):e23811.PubMedPubMedCentralCrossRef Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, Prior F, Yu F Jr. Role of machine learning techniques to Tackle the COVID-19 Crisis: systematic review. JMIR Med Inform. 2021;9(1):e23811.PubMedPubMedCentralCrossRef
63.
go back to reference Alizadehsani R, Alizadeh Sani Z, Behjati M, Roshanzamir Z, Hussain S, Abedini N, Hasanzadeh F, Khosravi A, Shoeibi A, Roshanzamir M, et al. Risk factors prediction, clinical outcomes, and mortality in COVID-19 patients. J Med Virol. 2021;93(4):2307–20.PubMedCrossRef Alizadehsani R, Alizadeh Sani Z, Behjati M, Roshanzamir Z, Hussain S, Abedini N, Hasanzadeh F, Khosravi A, Shoeibi A, Roshanzamir M, et al. Risk factors prediction, clinical outcomes, and mortality in COVID-19 patients. J Med Virol. 2021;93(4):2307–20.PubMedCrossRef
64.
go back to reference Yu C, Lei Q, Li W, Wang X, Liu W, Fan X, Li W. Clinical characteristics, Associated factors, and Predicting COVID-19 mortality risk: a retrospective study in Wuhan, China. Am J Prev Med. 2020;59(2):168–75.PubMedPubMedCentralCrossRef Yu C, Lei Q, Li W, Wang X, Liu W, Fan X, Li W. Clinical characteristics, Associated factors, and Predicting COVID-19 mortality risk: a retrospective study in Wuhan, China. Am J Prev Med. 2020;59(2):168–75.PubMedPubMedCentralCrossRef
65.
66.
go back to reference Estiri H, Strasser ZH, Klann JG, Naseri P, Wagholikar KB, Murphy SN. Predicting COVID-19 mortality with electronic medical records. npj Digit Med. 2021;4(1):15.PubMedPubMedCentralCrossRef Estiri H, Strasser ZH, Klann JG, Naseri P, Wagholikar KB, Murphy SN. Predicting COVID-19 mortality with electronic medical records. npj Digit Med. 2021;4(1):15.PubMedPubMedCentralCrossRef
67.
go back to reference Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, Labrique A, Mohan D. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PLoS ONE. 2021;16(3):e0247461.PubMedPubMedCentralCrossRef Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, Labrique A, Mohan D. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PLoS ONE. 2021;16(3):e0247461.PubMedPubMedCentralCrossRef
68.
go back to reference Homayounieh F, Zhang EW, Babaei R, Karimi Mobin H, Sharifian M, Mohseni I, Kuo A, Arru C, Kalra MK, Digumarthy SR. Clinical and imaging features predict mortality in COVID-19 infection in Iran. PLoS ONE. 2020;15(9):23–36.CrossRef Homayounieh F, Zhang EW, Babaei R, Karimi Mobin H, Sharifian M, Mohseni I, Kuo A, Arru C, Kalra MK, Digumarthy SR. Clinical and imaging features predict mortality in COVID-19 infection in Iran. PLoS ONE. 2020;15(9):23–36.CrossRef
69.
go back to reference Shiri I, Sorouri M, Geramifar P, Nazari M, Abdollahi M, Salimi Y, Khosravi B, Askari D, Aghaghazvini L, Hajianfar G. Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients. Comput Biol Med. 2021;132:104–12.CrossRef Shiri I, Sorouri M, Geramifar P, Nazari M, Abdollahi M, Salimi Y, Khosravi B, Askari D, Aghaghazvini L, Hajianfar G. Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients. Comput Biol Med. 2021;132:104–12.CrossRef
70.
go back to reference Wu Y, Li H, Zhang Z, Liang W, Zhang T, Tong Z, Guo X, Qi X. Risk factors for mortality of coronavirus disease 2019 (COVID-19) patients during the early outbreak of COVID-19: a systematic review and meta-analysis. Ann Palliat Med 2021:5069–83. Wu Y, Li H, Zhang Z, Liang W, Zhang T, Tong Z, Guo X, Qi X. Risk factors for mortality of coronavirus disease 2019 (COVID-19) patients during the early outbreak of COVID-19: a systematic review and meta-analysis. Ann Palliat Med 2021:5069–83.
71.
go back to reference Gonca E, Chousein U, Çörtük M. Is there any effect of smoking status on severity and mortality of hospitalized patients with COVID-19 pneumonia? Tuberk Toraks. 2020;68(4):371–8.CrossRef Gonca E, Chousein U, Çörtük M. Is there any effect of smoking status on severity and mortality of hospitalized patients with COVID-19 pneumonia? Tuberk Toraks. 2020;68(4):371–8.CrossRef
72.
73.
go back to reference Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, Tobin KA, Cerfolio RJ, Francois F, Horwitz LI. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966.PubMedPubMedCentralCrossRef Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, Tobin KA, Cerfolio RJ, Francois F, Horwitz LI. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966.PubMedPubMedCentralCrossRef
74.
go back to reference Norden MJ, Avery DH, Norden JG, Haynor DR. National Smoking Rates Correlate inversely with COVID-19 mortality. medRxiv 2020:2020.2006.2012.20129825. Norden MJ, Avery DH, Norden JG, Haynor DR. National Smoking Rates Correlate inversely with COVID-19 mortality. medRxiv 2020:2020.2006.2012.20129825.
75.
go back to reference Williamson E, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv 2020:2020.2005.2006.20092999. Williamson E, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv 2020:2020.2005.2006.20092999.
76.
go back to reference Salah HM, Sharma T, Mehta J. Smoking doubles the mortality risk in COVID-19: a meta-analysis of recent reports and potential mechanisms. Cureus 2020, 12(10). Salah HM, Sharma T, Mehta J. Smoking doubles the mortality risk in COVID-19: a meta-analysis of recent reports and potential mechanisms. Cureus 2020, 12(10).
77.
go back to reference Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, Sarriá Cabrera MA, Maffei de Andrade S, Sequí-Dominguez I, Martínez-Vizcaíno V. Predictors of in-hospital COVID-19 mortality: a comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS ONE. 2020;15(11):e0241742.PubMedPubMedCentralCrossRef Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, Sarriá Cabrera MA, Maffei de Andrade S, Sequí-Dominguez I, Martínez-Vizcaíno V. Predictors of in-hospital COVID-19 mortality: a comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS ONE. 2020;15(11):e0241742.PubMedPubMedCentralCrossRef
78.
go back to reference Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann Epidemiol. 2020;52:93–98e92.PubMedPubMedCentralCrossRef Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann Epidemiol. 2020;52:93–98e92.PubMedPubMedCentralCrossRef
79.
go back to reference Kar S, Chawla R, Haranath SP, Ramasubban S, Ramakrishnan N, Vaishya R, Sibal A, Reddy S. Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci Rep. 2021;11(1):12801.PubMedPubMedCentralCrossRef Kar S, Chawla R, Haranath SP, Ramasubban S, Ramakrishnan N, Vaishya R, Sibal A, Reddy S. Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci Rep. 2021;11(1):12801.PubMedPubMedCentralCrossRef
80.
go back to reference Fink DL, Khan PY, Goldman N, Cai J, Hone L, Mooney C, El-Shakankery KH, Sismey G, Whitford V, Marks M, et al. Development and internal validation of a diagnostic prediction model for COVID-19 at time of admission to hospital. QJM: An International Journal of Medicine. 2020;114(10):699–705.CrossRef Fink DL, Khan PY, Goldman N, Cai J, Hone L, Mooney C, El-Shakankery KH, Sismey G, Whitford V, Marks M, et al. Development and internal validation of a diagnostic prediction model for COVID-19 at time of admission to hospital. QJM: An International Journal of Medicine. 2020;114(10):699–705.CrossRef
Metadata
Title
Machine learning-based mortality prediction models for smoker COVID-19 patients
Authors
Ali Sharifi-Kia
Azin Nahvijou
Abbas Sheikhtaheri
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
COVID-19
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02237-w

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue