Skip to main content
Top
Published in: Critical Care 1/2022

Open Access 01-12-2022 | COVID-19 | Brief Report

Breath-by-breath P0.1 measured on quasi-occlusion via Hamilton C6 may result in underestimation of respiratory drive and inspiratory effort

Authors: Ryo Takane, Mikio Nakajima, Maki Miwa, Richard H. Kaszynski, Tomotsugu Nakano, Hideaki Goto, Muneyuki Takeuchi

Published in: Critical Care | Issue 1/2022

Login to get access

Abstract

We aimed to identify the threshold for P0.1 in a breath-by-breath manner measured by the Hamilton C6 on quasi-occlusion for high respiratory drive and inspiratory effort. In this prospective observational study, we analyzed the relationships between airway P0.1 on quasi-occlusion and esophageal pressure (esophageal P0.1 and esophageal pressure swing). We also conducted a linear regression analysis and derived the threshold of airway P0.1 on quasi-occlusion for high respiratory drive and inspiratory effort. We found that airway P0.1 measured on quasi-occlusion had a strong positive correlation with esophageal P0.1 measured on quasi-occlusion and esophageal pressure swing, respectively. Additionally, the P0.1 threshold for high respiratory drive and inspiratory effort were calculated at approximately 1.0 cmH2O from the regression equations. Our calculations suggest a lower threshold of airway P0.1 measured by the Hamilton C6 on quasi-occlusion than that which has been previously reported.
Literature
1.
go back to reference Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care. 2020;24(1):106.CrossRef Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care. 2020;24(1):106.CrossRef
2.
go back to reference Telias I, Junhasavasdikul D, Rittayamai N, Piquilloud L, Chen L, Ferguson ND, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med. 2020;201(9):1086–98.CrossRef Telias I, Junhasavasdikul D, Rittayamai N, Piquilloud L, Chen L, Ferguson ND, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med. 2020;201(9):1086–98.CrossRef
3.
go back to reference Iotti GA, Brunner JX, Braschi A, Laubscher T, Olivei MC, Palo A, et al. Closed-loop control of airway occlusion pressure at 0.1 second (P0.1) applied to pressure-support ventilation: algorithm and application in intubated patients. Crit Care Med. 1996;24(5):771–9.CrossRef Iotti GA, Brunner JX, Braschi A, Laubscher T, Olivei MC, Palo A, et al. Closed-loop control of airway occlusion pressure at 0.1 second (P0.1) applied to pressure-support ventilation: algorithm and application in intubated patients. Crit Care Med. 1996;24(5):771–9.CrossRef
4.
go back to reference Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.CrossRef Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–31.CrossRef
5.
go back to reference Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.CrossRef Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.CrossRef
6.
go back to reference Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21(7):547–53.CrossRef Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21(7):547–53.CrossRef
7.
go back to reference Goligher EC, Jonkman AH, Dianti J, Vaporidi K, Beitler JR, Patel BK, et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med. 2020;46(12):2314–26.CrossRef Goligher EC, Jonkman AH, Dianti J, Vaporidi K, Beitler JR, Patel BK, et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med. 2020;46(12):2314–26.CrossRef
8.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl. 1986;1(8476):307–10.CrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl. 1986;1(8476):307–10.CrossRef
9.
go back to reference Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46(4):606–18.CrossRef Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46(4):606–18.CrossRef
10.
go back to reference Rittayamai N, Beloncle F, Goligher EC, Chen L, Mancebo J, Richard JCM, et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care. 2017;7(1):100.CrossRef Rittayamai N, Beloncle F, Goligher EC, Chen L, Mancebo J, Richard JCM, et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care. 2017;7(1):100.CrossRef
11.
go back to reference Beloncle F, Piquilloud L, Olivier PY, Vuillermoz A, Yvin E, Mercat A, et al. Accuracy of P0.1 measurements performed by ICU ventilators: a bench study. Ann Intensive Care. 2019;9(1):104.CrossRef Beloncle F, Piquilloud L, Olivier PY, Vuillermoz A, Yvin E, Mercat A, et al. Accuracy of P0.1 measurements performed by ICU ventilators: a bench study. Ann Intensive Care. 2019;9(1):104.CrossRef
Metadata
Title
Breath-by-breath P0.1 measured on quasi-occlusion via Hamilton C6 may result in underestimation of respiratory drive and inspiratory effort
Authors
Ryo Takane
Mikio Nakajima
Maki Miwa
Richard H. Kaszynski
Tomotsugu Nakano
Hideaki Goto
Muneyuki Takeuchi
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
COVID-19
Published in
Critical Care / Issue 1/2022
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-022-04286-5

Other articles of this Issue 1/2022

Critical Care 1/2022 Go to the issue