Skip to main content
Top
Published in: BMC Cancer 1/2007

Open Access 01-12-2007 | Research article

Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

Authors: Xinxin Bu, Fengqi Jia, Weifeng Wang, Xianling Guo, Mengchao Wu, Lixin Wei

Published in: BMC Cancer | Issue 1/2007

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation.

Methods

This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively.

Results

Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells.

Conclusion

These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference El-Serag HB: Hepatocellular Carcinoma: An Epidemiologic View. Journal of Clinical Gastroenterology. 2002, 35 (5 Suppl 2): S72-78. 10.1097/00004836-200211002-00002.CrossRefPubMed El-Serag HB: Hepatocellular Carcinoma: An Epidemiologic View. Journal of Clinical Gastroenterology. 2002, 35 (5 Suppl 2): S72-78. 10.1097/00004836-200211002-00002.CrossRefPubMed
2.
go back to reference Blume-Jensen P, Hunter T: Oncogenic kinase signaling. Nature. 2001, 411 (6835): 355-365. 10.1038/35077225.CrossRefPubMed Blume-Jensen P, Hunter T: Oncogenic kinase signaling. Nature. 2001, 411 (6835): 355-365. 10.1038/35077225.CrossRefPubMed
3.
go back to reference Datta SR, Brunet A, Greenberg ME: Cellular survival:a play in three Akts. Genes Dev. 1999, 13: 2905-2927. 10.1101/gad.13.22.2905.CrossRefPubMed Datta SR, Brunet A, Greenberg ME: Cellular survival:a play in three Akts. Genes Dev. 1999, 13: 2905-2927. 10.1101/gad.13.22.2905.CrossRefPubMed
4.
go back to reference Brown EJ, Albers MW, Shin TB, Ocjlawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin receptor complex. Nature. 1994, 369 (6483): 756-758. 10.1038/369756a0.CrossRefPubMed Brown EJ, Albers MW, Shin TB, Ocjlawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin receptor complex. Nature. 1994, 369 (6483): 756-758. 10.1038/369756a0.CrossRefPubMed
5.
go back to reference Chiu MI, Katz H, Berlin V: RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci. 1994, 91 (26): 12574-12578. 10.1073/pnas.91.26.12574.CrossRefPubMedPubMedCentral Chiu MI, Katz H, Berlin V: RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci. 1994, 91 (26): 12574-12578. 10.1073/pnas.91.26.12574.CrossRefPubMedPubMedCentral
6.
go back to reference Sabatini DM, Erdjument-Bromage H, Liu M, Tempst P, Snyder SH: RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994, 78 (1): 35-43. 10.1016/0092-8674(94)90570-3.CrossRefPubMed Sabatini DM, Erdjument-Bromage H, Liu M, Tempst P, Snyder SH: RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994, 78 (1): 35-43. 10.1016/0092-8674(94)90570-3.CrossRefPubMed
7.
go back to reference Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL: Control of p70s6 kinase activity of FRAP in vivo. Nature. 1995, 377 (6548): 441-446. 10.1038/377441a0.CrossRefPubMed Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL: Control of p70s6 kinase activity of FRAP in vivo. Nature. 1995, 377 (6548): 441-446. 10.1038/377441a0.CrossRefPubMed
8.
go back to reference Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM: RAFT1 phosphorylation of the translational regulators p70s6 kinase and 4E-BP1. Proc Natl Acad Sci. 1998, 95 (4): 1432-1437. 10.1073/pnas.95.4.1432.CrossRefPubMedPubMedCentral Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM: RAFT1 phosphorylation of the translational regulators p70s6 kinase and 4E-BP1. Proc Natl Acad Sci. 1998, 95 (4): 1432-1437. 10.1073/pnas.95.4.1432.CrossRefPubMedPubMedCentral
9.
go back to reference Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K: Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999, 274 (48): 34493-34498. 10.1074/jbc.274.48.34493.CrossRefPubMed Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K: Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999, 274 (48): 34493-34498. 10.1074/jbc.274.48.34493.CrossRefPubMed
10.
go back to reference Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997, 16 (12): 3693-3704. 10.1093/emboj/16.12.3693.CrossRefPubMedPubMedCentral Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997, 16 (12): 3693-3704. 10.1093/emboj/16.12.3693.CrossRefPubMedPubMedCentral
11.
go back to reference Jefferies HB, Reinhard C, Kozma SC, Thomas G: Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci. 1994, 91 (10): 4441-4445. 10.1073/pnas.91.10.4441.CrossRefPubMedPubMedCentral Jefferies HB, Reinhard C, Kozma SC, Thomas G: Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci. 1994, 91 (10): 4441-4445. 10.1073/pnas.91.10.4441.CrossRefPubMedPubMedCentral
12.
go back to reference Lawrence JC, Abraham RT: PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci. 1997, 22 (9): 345-349. 10.1016/S0968-0004(97)01101-8.CrossRefPubMed Lawrence JC, Abraham RT: PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci. 1997, 22 (9): 345-349. 10.1016/S0968-0004(97)01101-8.CrossRefPubMed
13.
go back to reference Rousseau D, Gingras AC, Pause A, Sonenberg N: The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene. 1996, 13 (11): 2415-2420.PubMed Rousseau D, Gingras AC, Pause A, Sonenberg N: The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene. 1996, 13 (11): 2415-2420.PubMed
14.
go back to reference Shi Y, Yan H, Frost P, Gera J, Lichtenstein A: Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005, 4 (10): 1533-1540. 10.1158/1535-7163.MCT-05-0068.CrossRefPubMed Shi Y, Yan H, Frost P, Gera J, Lichtenstein A: Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005, 4 (10): 1533-1540. 10.1158/1535-7163.MCT-05-0068.CrossRefPubMed
15.
go back to reference Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB: Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 1995, 55 (9): 1982-1988.PubMed Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB: Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 1995, 55 (9): 1982-1988.PubMed
16.
go back to reference Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW: Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci. 1994, 91 (24): 11477-11481. 10.1073/pnas.91.24.11477.CrossRefPubMedPubMedCentral Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW: Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci. 1994, 91 (24): 11477-11481. 10.1073/pnas.91.24.11477.CrossRefPubMedPubMedCentral
17.
go back to reference Nielsen FC, Ostergaard L, Nielsen J, Christiansen J: Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway. Nature. 1995, 377 (6547): 358-362. 10.1038/377358a0.CrossRefPubMed Nielsen FC, Ostergaard L, Nielsen J, Christiansen J: Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway. Nature. 1995, 377 (6547): 358-362. 10.1038/377358a0.CrossRefPubMed
18.
go back to reference Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Lebulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM: Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem. 1995, 270 (36): 21176-21180. 10.1074/jbc.270.36.21176.CrossRefPubMed Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Lebulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM: Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem. 1995, 270 (36): 21176-21180. 10.1074/jbc.270.36.21176.CrossRefPubMed
19.
go back to reference Castedo M, Ferri KF, Kroemer G: Mammalian target of rapamycin (mTOR):pro- and anti-apoptotic. Cell Death Differ. 2002, 9 (2): 99-100. 10.1038/sj/cdd/4400978.CrossRefPubMed Castedo M, Ferri KF, Kroemer G: Mammalian target of rapamycin (mTOR):pro- and anti-apoptotic. Cell Death Differ. 2002, 9 (2): 99-100. 10.1038/sj/cdd/4400978.CrossRefPubMed
20.
go back to reference Muller M, Heicappell R, Krause H, Sachsinger J, Porsche C, Miller K: Telomerase activity in malignant and benign renal tumors. Eur Urol. 1999, 35 (3): 249-257. 10.1159/000019856.CrossRefPubMed Muller M, Heicappell R, Krause H, Sachsinger J, Porsche C, Miller K: Telomerase activity in malignant and benign renal tumors. Eur Urol. 1999, 35 (3): 249-257. 10.1159/000019856.CrossRefPubMed
21.
go back to reference Counter CM, Meyerson M, Eaton EN, Ellison LW, Caddle SD, Haber DA, Weiberg RA: Telomerase activity is restored in human cells by ectopic expression of hTERT(hEST2), the catalytic subunit of telomerase. Oncogene. 1998, 16 (9): 1217-1221. 10.1038/sj.onc.1201882.CrossRefPubMed Counter CM, Meyerson M, Eaton EN, Ellison LW, Caddle SD, Haber DA, Weiberg RA: Telomerase activity is restored in human cells by ectopic expression of hTERT(hEST2), the catalytic subunit of telomerase. Oncogene. 1998, 16 (9): 1217-1221. 10.1038/sj.onc.1201882.CrossRefPubMed
22.
go back to reference Mehle C, Piatyszek MA, Ljungberg B, Shay JW, Roos G: Telomerase activity in human renal cell carcinoma. Oncogene. 1996, 13 (1): 161-166.PubMed Mehle C, Piatyszek MA, Ljungberg B, Shay JW, Roos G: Telomerase activity in human renal cell carcinoma. Oncogene. 1996, 13 (1): 161-166.PubMed
23.
go back to reference Morin GB: The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989, 59 (3): 521-529. 10.1016/0092-8674(89)90035-4.CrossRefPubMed Morin GB: The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989, 59 (3): 521-529. 10.1016/0092-8674(89)90035-4.CrossRefPubMed
24.
go back to reference Counter CM, Hirte HW, Bachetti S, Harley CB: Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci. 1994, 91 (8): 2900-2904. 10.1073/pnas.91.8.2900.CrossRefPubMedPubMedCentral Counter CM, Hirte HW, Bachetti S, Harley CB: Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci. 1994, 91 (8): 2900-2904. 10.1073/pnas.91.8.2900.CrossRefPubMedPubMedCentral
25.
go back to reference Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancers. Science. 1994, 266 (5193): 2011-2015. 10.1126/science.7605428.CrossRefPubMed Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancers. Science. 1994, 266 (5193): 2011-2015. 10.1126/science.7605428.CrossRefPubMed
26.
go back to reference Shay JW, Bachetti S: A survey of telomerase activity in human cancer. Eur J Cancer. 1997, 33 (5): 787-791. 10.1016/S0959-8049(97)00062-2.CrossRefPubMed Shay JW, Bachetti S: A survey of telomerase activity in human cancer. Eur J Cancer. 1997, 33 (5): 787-791. 10.1016/S0959-8049(97)00062-2.CrossRefPubMed
27.
go back to reference Nagao K, Tomimatsu M, Endo H, Hisatomi H, Hikiji K: Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. J Gastroenterol. 1999, 34 (1): 83-87. 10.1007/s005350050220.CrossRefPubMed Nagao K, Tomimatsu M, Endo H, Hisatomi H, Hikiji K: Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. J Gastroenterol. 1999, 34 (1): 83-87. 10.1007/s005350050220.CrossRefPubMed
28.
go back to reference Gerelsaikhan T, Tavis JE, Bruss V: Hepatisis B virus nucleocapsid development does not occur without genomic DNA synthesis. J Virol. 1996, 70 (7): 4269-4274.PubMedPubMedCentral Gerelsaikhan T, Tavis JE, Bruss V: Hepatisis B virus nucleocapsid development does not occur without genomic DNA synthesis. J Virol. 1996, 70 (7): 4269-4274.PubMedPubMedCentral
29.
30.
go back to reference Saretzki G: Telomerase inhibition as cancer therapy. Cancer Lett. 2003, 194 (2): 209-219. 10.1016/S0304-3835(02)00708-5.CrossRefPubMed Saretzki G: Telomerase inhibition as cancer therapy. Cancer Lett. 2003, 194 (2): 209-219. 10.1016/S0304-3835(02)00708-5.CrossRefPubMed
31.
go back to reference Abraham RT: Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell. 111 (1): 9-12. 10.1016/S0092-8674(02)01009-7. Abraham RT: Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell. 111 (1): 9-12. 10.1016/S0092-8674(02)01009-7.
32.
go back to reference Erbay E, Chen J: The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. J Biol Chem. 2002, 276 (39): 36079-36082. 10.1074/jbc.C100406200.CrossRef Erbay E, Chen J: The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. J Biol Chem. 2002, 276 (39): 36079-36082. 10.1074/jbc.C100406200.CrossRef
33.
go back to reference Shu L, Zhang X, Houghton PJ: Myogenic differentiation is dependent on both the kinase function and the N-terminal sequence of mammalian target of rapamycin. J Biol Chem. 2002, 277 (19): 16726-16732. 10.1074/jbc.M112285200.CrossRefPubMed Shu L, Zhang X, Houghton PJ: Myogenic differentiation is dependent on both the kinase function and the N-terminal sequence of mammalian target of rapamycin. J Biol Chem. 2002, 277 (19): 16726-16732. 10.1074/jbc.M112285200.CrossRefPubMed
34.
go back to reference Jacinto E, Hall MN: Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 2003, 4 (2): 117-126. 10.1038/nrm1018.CrossRefPubMed Jacinto E, Hall MN: Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 2003, 4 (2): 117-126. 10.1038/nrm1018.CrossRefPubMed
35.
go back to reference Braun-Dullaeus RC, Mann MJ, Seay U, Zhang L, von Der Leyen HE, Morris RE, Dzau VJ: Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol. 2001, 21 (7): 1152-1158. 10.1161/hq0701.092104.CrossRefPubMed Braun-Dullaeus RC, Mann MJ, Seay U, Zhang L, von Der Leyen HE, Morris RE, Dzau VJ: Cell cycle protein expression in vascular smooth muscle cells in vitro and in vivo is regulated through phosphatidylinositol 3-kinase and mammalian target of rapamycin. Arterioscler Thromb Vasc Biol. 2001, 21 (7): 1152-1158. 10.1161/hq0701.092104.CrossRefPubMed
36.
go back to reference Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK: Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002, 8 (2): 128-135. 10.1038/nm0202-128.CrossRefPubMed Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK: Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002, 8 (2): 128-135. 10.1038/nm0202-128.CrossRefPubMed
37.
go back to reference Choi JH, Bertram PG, Drenan R, Carvalho J, Zhou HH, Zheng XF: The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 2002, 3 (10): 988-994. 10.1093/embo-reports/kvf197.CrossRefPubMedPubMedCentral Choi JH, Bertram PG, Drenan R, Carvalho J, Zhou HH, Zheng XF: The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 2002, 3 (10): 988-994. 10.1093/embo-reports/kvf197.CrossRefPubMedPubMedCentral
38.
go back to reference Houghton PJ, Huang S: mTOR as a target for cancer therapy. Curr Top Microbiol Immunol. 2004, 279: 339-359.PubMed Houghton PJ, Huang S: mTOR as a target for cancer therapy. Curr Top Microbiol Immunol. 2004, 279: 339-359.PubMed
39.
go back to reference Gingras AC, Raught B, Sonenberg N: Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2002, 15 (7): 807-826. 10.1101/gad.887201.CrossRef Gingras AC, Raught B, Sonenberg N: Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2002, 15 (7): 807-826. 10.1101/gad.887201.CrossRef
40.
go back to reference Huang S, Houghton PJ: Inhibitors of mammalian target of rapamycin as novel antitumor agents:from bench to clinic. Curr Opin Investig Drugs. 2002, 3 (2): 295-304.PubMed Huang S, Houghton PJ: Inhibitors of mammalian target of rapamycin as novel antitumor agents:from bench to clinic. Curr Opin Investig Drugs. 2002, 3 (2): 295-304.PubMed
Metadata
Title
Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells
Authors
Xinxin Bu
Fengqi Jia
Weifeng Wang
Xianling Guo
Mengchao Wu
Lixin Wei
Publication date
01-12-2007
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2007
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-7-208

Other articles of this Issue 1/2007

BMC Cancer 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine