Skip to main content
Top
Published in: International Ophthalmology 1/2019

01-01-2019 | Review

Could adverse effects and complications of selective laser trabeculoplasty be decreased by low-power laser therapy?

Authors: Alexandre de Carvalho Mendes Paiva, Adenilson de Souza da Fonseca

Published in: International Ophthalmology | Issue 1/2019

Login to get access

Abstract

Selective laser trabeculoplasty (SLT) has been used for treatment of primary open-angle glaucoma, ocular hypertension, pigmenter and pseudoexfoliative glaucoma being considered a low-risk procedure. Therefore, transitory and permanent adverse effects have been reported, including corneal changes, subclinical edema, and reduction in endothelial cells and in central corneal thickness. Despite rarer, serious corneal complications after SLT can be permanent and lead to visual impairment, central corneal haze, opacity and narrowing. The mechanism involves increase of vasoactive and chemotactic cytokines causing inflammatory infiltrate, destruction of stromal collagen by fibroblasts and increase of matrix metalloproteinases type 2, which impair reepithelization. SLT also increases free radical production and reduces antioxidant enzymes, resulting in endothelium damages. Low-power laser therapy (LPLT) has been used in regenerative medicine based on its biostimulatory and anti-inflammatory effects. Biostimulation occurs through the interaction of laser photons with cytochrome C oxidase enzyme, which activates intracellular biochemical cascades causing synthesis of a number of molecules related to anti-inflammatory, regenerative effects, pain relief and reduction in edema. It has been showed that LPLT reduces gene expression related to pro-inflammatory cytokines and matrix metalloproteinases, and it increases expression of growth factors related to its proliferative and healing actions. Although radiations emitted by low-power lasers are considered safe and able to induce therapeutic effects, researches based on experimental models for glaucoma could bring important data if LPLT could be an alternative approach to improve acceptation for patients undergoing SLT.
Literature
1.
go back to reference Martins da Silva MI, Tavares-Ferreira J, Estrela-Silva S, Melo AB, Falcão-Reis F (2015) Trabeculoplastia seletiva por laser—revisão. Oftalmologia 39:215–222 Martins da Silva MI, Tavares-Ferreira J, Estrela-Silva S, Melo AB, Falcão-Reis F (2015) Trabeculoplastia seletiva por laser—revisão. Oftalmologia 39:215–222
2.
go back to reference De Keyser M, De Belder M, De Belder S, De Groot V (2016) Where does selective laser trabeculoplasty stand now? A review. Eye Vis (Lond) 3:10CrossRef De Keyser M, De Belder M, De Belder S, De Groot V (2016) Where does selective laser trabeculoplasty stand now? A review. Eye Vis (Lond) 3:10CrossRef
4.
go back to reference Liu Y, Birt CM (2012) Argon versus selective laser trabeculoplasty in younger patients: 2-year results. J Glaucoma 21:112–115PubMed Liu Y, Birt CM (2012) Argon versus selective laser trabeculoplasty in younger patients: 2-year results. J Glaucoma 21:112–115PubMed
5.
go back to reference Zhang M, Li B, Wang J, Liu W, Sun Y, Wu X (2014) Clinical results of selective laser trabeculoplasty in silicone oil-induced secondary glaucoma. Graefes Arch Clin Exp Ophthalmol 252:983–987CrossRefPubMed Zhang M, Li B, Wang J, Liu W, Sun Y, Wu X (2014) Clinical results of selective laser trabeculoplasty in silicone oil-induced secondary glaucoma. Graefes Arch Clin Exp Ophthalmol 252:983–987CrossRefPubMed
6.
go back to reference Narayanaswamy A, Leung CK, Istiantoro DV, Perera SA, Ho CL, Nongpiur ME, Baskaran M, Htoon HM, Wong TT, Goh D, Su DH, Belkin M, Aung T (2015) Efficacy of selective laser trabeculoplasty in primary angle-closure glaucoma: a randomized clinical trial. JAMA Ophthalmol 133:206–212CrossRefPubMed Narayanaswamy A, Leung CK, Istiantoro DV, Perera SA, Ho CL, Nongpiur ME, Baskaran M, Htoon HM, Wong TT, Goh D, Su DH, Belkin M, Aung T (2015) Efficacy of selective laser trabeculoplasty in primary angle-closure glaucoma: a randomized clinical trial. JAMA Ophthalmol 133:206–212CrossRefPubMed
7.
go back to reference Ali Aljasim L, Owaidhah O, Edward DP (2016) Selective laser trabeculoplasty in primary angle-closure glaucoma after laser peripheral iridotomy: a case–control study. J Glaucoma 25:e253–e258CrossRefPubMed Ali Aljasim L, Owaidhah O, Edward DP (2016) Selective laser trabeculoplasty in primary angle-closure glaucoma after laser peripheral iridotomy: a case–control study. J Glaucoma 25:e253–e258CrossRefPubMed
8.
go back to reference Bettis DI, Whitehead JJ, Farhi P, Zabriskie NA (2016) Intraocular pressure spike and corneal decompensation following selective laser trabeculoplasty in patients with exfoliation glaucoma. J Glaucoma 25:e433–e437CrossRefPubMed Bettis DI, Whitehead JJ, Farhi P, Zabriskie NA (2016) Intraocular pressure spike and corneal decompensation following selective laser trabeculoplasty in patients with exfoliation glaucoma. J Glaucoma 25:e433–e437CrossRefPubMed
9.
go back to reference Zhang L, Weizer JS, Musch DC (2017) Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty. Cochrane Datab Syst Rev 2:CD010746 Zhang L, Weizer JS, Musch DC (2017) Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty. Cochrane Datab Syst Rev 2:CD010746
10.
go back to reference Martinez-de-la-Casa JM, Garcia-Feijoo J, Castillo A, Matilla M, Macias JM, Benitez-del-Castillo JM (2004) Selective vs argon laser trabeculoplasty: hypotensive efficacy, anterior chamber inflammation, and postoperative pain. Eye 18:498–502CrossRefPubMed Martinez-de-la-Casa JM, Garcia-Feijoo J, Castillo A, Matilla M, Macias JM, Benitez-del-Castillo JM (2004) Selective vs argon laser trabeculoplasty: hypotensive efficacy, anterior chamber inflammation, and postoperative pain. Eye 18:498–502CrossRefPubMed
11.
go back to reference Nagar M, Ogunyomade A, O’Brart DP, Howes F, Marshall J (2005) A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol 89:1413–1417CrossRefPubMedPubMedCentral Nagar M, Ogunyomade A, O’Brart DP, Howes F, Marshall J (2005) A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol 89:1413–1417CrossRefPubMedPubMedCentral
12.
go back to reference Wong MO, Lee JW, Choy BN, Chan JC, Lai JS (2015) Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol 60:36–50CrossRefPubMed Wong MO, Lee JW, Choy BN, Chan JC, Lai JS (2015) Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol 60:36–50CrossRefPubMed
13.
go back to reference Moubayed SP, Hamid M, Choremis J, Li G (2009) An unusual finding of corneal edema complicating selective laser trabeculoplasty. Can J Ophthalmol 44:337–338CrossRefPubMed Moubayed SP, Hamid M, Choremis J, Li G (2009) An unusual finding of corneal edema complicating selective laser trabeculoplasty. Can J Ophthalmol 44:337–338CrossRefPubMed
14.
go back to reference Huang Y, Zhang M, Huang C, Chen B, Lam DS, Zhang S, Congdon N (2011) Determinants of postoperative corneal edema and impact on goldmann intraocular pressure. Cornea 30:962–967CrossRefPubMed Huang Y, Zhang M, Huang C, Chen B, Lam DS, Zhang S, Congdon N (2011) Determinants of postoperative corneal edema and impact on goldmann intraocular pressure. Cornea 30:962–967CrossRefPubMed
15.
go back to reference Knickelbein JE, Singh A, Flowers BE, Nair UK, Eisenberg M, Davis R, Raju LV, Schuman JS, Conner IP (2014) Acute corneal edema with subsequent thinning and hyperopic shift following selective laser trabeculoplasty. J Cataract Refract Surg 40:1731–1735CrossRefPubMedPubMedCentral Knickelbein JE, Singh A, Flowers BE, Nair UK, Eisenberg M, Davis R, Raju LV, Schuman JS, Conner IP (2014) Acute corneal edema with subsequent thinning and hyperopic shift following selective laser trabeculoplasty. J Cataract Refract Surg 40:1731–1735CrossRefPubMedPubMedCentral
16.
go back to reference Ozkok A, Tamcelik N, Ucar Comlekoglu D, Iskeleli G (2014) Corneal decompensation after selective laser trabeculoplasty. Case Rep Ophthalmol Med 2014:851971PubMedPubMedCentral Ozkok A, Tamcelik N, Ucar Comlekoglu D, Iskeleli G (2014) Corneal decompensation after selective laser trabeculoplasty. Case Rep Ophthalmol Med 2014:851971PubMedPubMedCentral
17.
go back to reference Chadha N, Belyea DA, Grewal S (2016) Herpetic stromal keratitis following selective laser trabeculoplasty. Case Rep Ophthalmol Med 2016:5768524PubMedPubMedCentral Chadha N, Belyea DA, Grewal S (2016) Herpetic stromal keratitis following selective laser trabeculoplasty. Case Rep Ophthalmol Med 2016:5768524PubMedPubMedCentral
18.
go back to reference Song J, Yu D, Song A, Palmares T, Song HS, Song M (2014) Corneal thinning and opacity following selective laser trabeculoplasty: a case report. Br J Med Res 4:279–287CrossRef Song J, Yu D, Song A, Palmares T, Song HS, Song M (2014) Corneal thinning and opacity following selective laser trabeculoplasty: a case report. Br J Med Res 4:279–287CrossRef
19.
go back to reference Guven Yilmaz S, Palamar M, Yusifov E, Ates H, Egrilmez S, Yagci A (2015) Effects of primary selective laser trabeculoplasty on anterior segment parameters. Int J Ophthalmol 8:954–959PubMedPubMedCentral Guven Yilmaz S, Palamar M, Yusifov E, Ates H, Egrilmez S, Yagci A (2015) Effects of primary selective laser trabeculoplasty on anterior segment parameters. Int J Ophthalmol 8:954–959PubMedPubMedCentral
20.
go back to reference Koc M, Durukan I, Koban Y, Ceran BB, Ayar O, Ekinci M, Yilmazbas P (2015) Effect of selective laser trabeculoplasty on macular thickness. Clin Ophthalmol 9:2335–2338PubMedPubMedCentral Koc M, Durukan I, Koban Y, Ceran BB, Ayar O, Ekinci M, Yilmazbas P (2015) Effect of selective laser trabeculoplasty on macular thickness. Clin Ophthalmol 9:2335–2338PubMedPubMedCentral
21.
go back to reference Atalay K, Kirgiz A, Serefoglu Cabuk K, Erdogan Kaldirim H (2016) Corneal topographic alterations after selective laser trabeculoplasty. Int Ophthalmol 37:905–910CrossRefPubMed Atalay K, Kirgiz A, Serefoglu Cabuk K, Erdogan Kaldirim H (2016) Corneal topographic alterations after selective laser trabeculoplasty. Int Ophthalmol 37:905–910CrossRefPubMed
22.
go back to reference White AJ, Mukherjee A, Hanspal I, Sarkies NJ, Martin KR, Shah P (2013) Acute transient corneal endothelial changes following selective laser trabeculoplasty. Clin Exp Ophthalmol 41:435–441CrossRefPubMed White AJ, Mukherjee A, Hanspal I, Sarkies NJ, Martin KR, Shah P (2013) Acute transient corneal endothelial changes following selective laser trabeculoplasty. Clin Exp Ophthalmol 41:435–441CrossRefPubMed
23.
go back to reference Lee JW, Chan JC, Chang RT, Singh K, Liu CC, Gangwani R, Wong MOM, Lai JSM (2014) Corneal changes after a single session of selective laser trabeculoplasty for open-angle glaucoma. Eye 28:47–52CrossRefPubMed Lee JW, Chan JC, Chang RT, Singh K, Liu CC, Gangwani R, Wong MOM, Lai JSM (2014) Corneal changes after a single session of selective laser trabeculoplasty for open-angle glaucoma. Eye 28:47–52CrossRefPubMed
24.
go back to reference Regina M, Bunya VY, Orlin SE, Ansari H (2011) Corneal edema and haze after selective laser trabeculoplasty. J Glaucoma 20:327–329CrossRefPubMed Regina M, Bunya VY, Orlin SE, Ansari H (2011) Corneal edema and haze after selective laser trabeculoplasty. J Glaucoma 20:327–329CrossRefPubMed
25.
go back to reference Guzey M, Vural H, Satici A, Karadede S, Dogan Z (2001) Increase of free oxygen radicals in aqueous humour induced by selective Nd:YAG laser trabeculoplasty in the rabbit. Eur J Ophthalmol 11:47–52CrossRefPubMed Guzey M, Vural H, Satici A, Karadede S, Dogan Z (2001) Increase of free oxygen radicals in aqueous humour induced by selective Nd:YAG laser trabeculoplasty in the rabbit. Eur J Ophthalmol 11:47–52CrossRefPubMed
26.
go back to reference Kaye S, Choudhary A (2006) Herpes simplex keratitis. Prog Retina Eye Res 25:355–380CrossRef Kaye S, Choudhary A (2006) Herpes simplex keratitis. Prog Retina Eye Res 25:355–380CrossRef
27.
go back to reference Hong JW, Liu JJ, Lee JS, Mohan RR, Mohan RR, Woods DJ, He YJ, Wilson SE (2001) Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmic Vis Sci 42:2795–2803 Hong JW, Liu JJ, Lee JS, Mohan RR, Mohan RR, Woods DJ, He YJ, Wilson SE (2001) Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmic Vis Sci 42:2795–2803
28.
go back to reference Shoshani Y, Pe’er J, Doviner V, Frucht-Pery J, Solomon A (2005) Increased expression of inflammatory cytokines and matrix metalloproteinases in pseudophakic corneal edema. Invest Ophthalmol Vis Sci 46:1940CrossRefPubMed Shoshani Y, Pe’er J, Doviner V, Frucht-Pery J, Solomon A (2005) Increased expression of inflammatory cytokines and matrix metalloproteinases in pseudophakic corneal edema. Invest Ophthalmol Vis Sci 46:1940CrossRefPubMed
29.
go back to reference Mester E, Szende B, Tora JG (1967) Effect of laser on hair growth of mice. Kiserl Orvostud 19:628–631 Mester E, Szende B, Tora JG (1967) Effect of laser on hair growth of mice. Kiserl Orvostud 19:628–631
30.
go back to reference Abrahamse H (2012) Regenerative medicine, stem cells, and low-level laser therapy: future directives. Photomed Laser Surg 30:681–682CrossRefPubMed Abrahamse H (2012) Regenerative medicine, stem cells, and low-level laser therapy: future directives. Photomed Laser Surg 30:681–682CrossRefPubMed
31.
go back to reference Takenori A, Ikuhiro M, Shogo U, Hiroe K, Junji S, Yasutaka T, Hiroya K, Miki N (2016) Immediate pain relief effect of low level laser therapy for sports injuries: Randomized, double-blind placebo clinical trial. J Sci Med Sport 19:980–983CrossRefPubMed Takenori A, Ikuhiro M, Shogo U, Hiroe K, Junji S, Yasutaka T, Hiroya K, Miki N (2016) Immediate pain relief effect of low level laser therapy for sports injuries: Randomized, double-blind placebo clinical trial. J Sci Med Sport 19:980–983CrossRefPubMed
32.
go back to reference Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55 Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55
33.
34.
go back to reference AlGhamdi KM, Kumar A, Moussa NA (2011) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249CrossRefPubMed AlGhamdi KM, Kumar A, Moussa NA (2011) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249CrossRefPubMed
36.
go back to reference Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, New YorkCrossRef Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, New YorkCrossRef
37.
go back to reference Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He–Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMed Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He–Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMed
38.
go back to reference Boulton M, Marshall J (1986) He–Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134 Boulton M, Marshall J (1986) He–Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134
39.
go back to reference Pinheiro AL, Carneiro NS, Vieira AL, Brugnera A Jr, Zanin FA, Barros RA, Silva PS (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20:23–26CrossRefPubMed Pinheiro AL, Carneiro NS, Vieira AL, Brugnera A Jr, Zanin FA, Barros RA, Silva PS (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20:23–26CrossRefPubMed
40.
go back to reference Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361CrossRefPubMed Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361CrossRefPubMed
41.
go back to reference Takac S, Stojanovic S (1998) Diagnostic and biostimulating lasers. Med Preg 51:245–249 Takac S, Stojanovic S (1998) Diagnostic and biostimulating lasers. Med Preg 51:245–249
42.
go back to reference Ghao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4CrossRef Ghao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4CrossRef
43.
go back to reference Stadler I, Evans R, Kolb B, Naim JO, Narayam V, Buehner N, Lanzafame RJ (2000) In vitro effects of low level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261CrossRefPubMed Stadler I, Evans R, Kolb B, Naim JO, Narayam V, Buehner N, Lanzafame RJ (2000) In vitro effects of low level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261CrossRefPubMed
44.
go back to reference Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefPubMed
45.
go back to reference Rizzi CF, Mauriz JL, Corrêa DSF, Moreira AJ, Zettler CG, Fillipin LI, Marroni NP, González-Gallego J (2006) Effects of low level laser therapy (LLLT) on the nuclear factor (NF-KB) signalling pathway in traumatized muscle. Lasers Surg Med 38:704–713CrossRefPubMed Rizzi CF, Mauriz JL, Corrêa DSF, Moreira AJ, Zettler CG, Fillipin LI, Marroni NP, González-Gallego J (2006) Effects of low level laser therapy (LLLT) on the nuclear factor (NF-KB) signalling pathway in traumatized muscle. Lasers Surg Med 38:704–713CrossRefPubMed
46.
go back to reference Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized achilles tendon. Lasers Surg Med 37:293–300CrossRefPubMed Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized achilles tendon. Lasers Surg Med 37:293–300CrossRefPubMed
47.
go back to reference das Neves LM, Leite GP, Marcolino AM, Pinfildi CE, Garcia SB, de Araújo JE, Guirro EC (2017) Laser photobiomodulation (830 and 660 nm) in mast cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci 32:335–341CrossRefPubMed das Neves LM, Leite GP, Marcolino AM, Pinfildi CE, Garcia SB, de Araújo JE, Guirro EC (2017) Laser photobiomodulation (830 and 660 nm) in mast cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci 32:335–341CrossRefPubMed
48.
go back to reference Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376CrossRefPubMed Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376CrossRefPubMed
49.
go back to reference Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium–Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investig Dermatol 127:2048–2057CrossRefPubMed Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium–Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investig Dermatol 127:2048–2057CrossRefPubMed
50.
go back to reference Sperandio FF, Simões A, Corrêa L, Aranha AC, Giudice FS, Hamblin MR, Sousa SC (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8:795–803CrossRefPubMed Sperandio FF, Simões A, Corrêa L, Aranha AC, Giudice FS, Hamblin MR, Sousa SC (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8:795–803CrossRefPubMed
51.
go back to reference Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH (2015) Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med Sci 30:635–643CrossRefPubMed Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH (2015) Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med Sci 30:635–643CrossRefPubMed
52.
go back to reference Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28:367–374CrossRefPubMed Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28:367–374CrossRefPubMed
53.
go back to reference Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9:1148–1156CrossRefPubMed Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9:1148–1156CrossRefPubMed
54.
go back to reference Gagnon D, Gibson TW, Singh A, zur Linden AR, Kazienko JE, LaMarre J (2016) An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model. BMC Vet Res 12:73CrossRefPubMedPubMedCentral Gagnon D, Gibson TW, Singh A, zur Linden AR, Kazienko JE, LaMarre J (2016) An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model. BMC Vet Res 12:73CrossRefPubMedPubMedCentral
55.
go back to reference Cunha MJ, Esper LA, Sbrana MC, Cirino CC, Oliveira PG, de Almeida AL (2013) Evaluation of the effectiveness of diode laser on pain and edema in individuals with cleft lip and palate submitted to secondary bone graft. Cleft Palate Craniofac J 50:e92–e97CrossRefPubMed Cunha MJ, Esper LA, Sbrana MC, Cirino CC, Oliveira PG, de Almeida AL (2013) Evaluation of the effectiveness of diode laser on pain and edema in individuals with cleft lip and palate submitted to secondary bone graft. Cleft Palate Craniofac J 50:e92–e97CrossRefPubMed
56.
go back to reference Meneguzzo DT, Lopes LA, Pallota R, Soares-Ferreira L, Lopes-Martins RA, Ribeiro MS (2013) Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci 28:973–980CrossRefPubMed Meneguzzo DT, Lopes LA, Pallota R, Soares-Ferreira L, Lopes-Martins RA, Ribeiro MS (2013) Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci 28:973–980CrossRefPubMed
57.
go back to reference Nadur-Andrade N, Dale CS, Santos AS, Soares AM, de Lima CJ, Zamuner SR (2014) Photobiostimulation reduces edema formation induced in mice by Lys-49 phospholipases A2 isolated from Bothrops moojeni venom. Photochem Photobiol Sci 13:1561–1567CrossRefPubMed Nadur-Andrade N, Dale CS, Santos AS, Soares AM, de Lima CJ, Zamuner SR (2014) Photobiostimulation reduces edema formation induced in mice by Lys-49 phospholipases A2 isolated from Bothrops moojeni venom. Photochem Photobiol Sci 13:1561–1567CrossRefPubMed
58.
go back to reference Ezzat AE, El-Shenawy HM, El-Begermy MM, Eid MI, Akel MM, Abbas AY (2016) The effectiveness of low-level laser on postoperative pain and edema in secondary palatal operation. Int J Pediatr Otorhinolaryngol 89:183–186CrossRefPubMed Ezzat AE, El-Shenawy HM, El-Begermy MM, Eid MI, Akel MM, Abbas AY (2016) The effectiveness of low-level laser on postoperative pain and edema in secondary palatal operation. Int J Pediatr Otorhinolaryngol 89:183–186CrossRefPubMed
59.
go back to reference Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S (2003) Transparency swelling and scarring in the corneal stroma. Eye (Lond) 17:927–936CrossRef Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S (2003) Transparency swelling and scarring in the corneal stroma. Eye (Lond) 17:927–936CrossRef
60.
go back to reference Hayes S, Boote C, Tuft SJ, Quantock AJ, Meek KM (2007) A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Exp Eye Res 84:423–434CrossRefPubMed Hayes S, Boote C, Tuft SJ, Quantock AJ, Meek KM (2007) A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Exp Eye Res 84:423–434CrossRefPubMed
61.
go back to reference de Freitas CE, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RA, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M (2015) High final energy of low-level gallium arsenide laser therapy enhances skeletal muscle recovery without a positive effect on collagen remodeling. Photochem Photobiol 91:957–965CrossRefPubMed de Freitas CE, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RA, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M (2015) High final energy of low-level gallium arsenide laser therapy enhances skeletal muscle recovery without a positive effect on collagen remodeling. Photochem Photobiol 91:957–965CrossRefPubMed
62.
go back to reference Tatmatsu-Rocha JC, Ferraresi C, Hamblin MR, Damasceno Maia F, do Nascimento NR, Driusso P, Parizotto NA (2016) Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J Photochem Photobiol B 164:96–102CrossRefPubMed Tatmatsu-Rocha JC, Ferraresi C, Hamblin MR, Damasceno Maia F, do Nascimento NR, Driusso P, Parizotto NA (2016) Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J Photochem Photobiol B 164:96–102CrossRefPubMed
63.
go back to reference Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, Rennó AC, Parizotto NA (2016) Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis. J Biomed Opt 21:88001CrossRefPubMed Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, Rennó AC, Parizotto NA (2016) Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis. J Biomed Opt 21:88001CrossRefPubMed
64.
go back to reference Trajano ET, da Trajano LA, Dos Santos Silva MA, Venter NG, de Porto LC, de Fonseca A, Monte-Alto-Costa A (2015) Low-level red laser improves healing of second-degree burn when applied during proliferative phase. Lasers Med Sci 30:1297–1304CrossRefPubMed Trajano ET, da Trajano LA, Dos Santos Silva MA, Venter NG, de Porto LC, de Fonseca A, Monte-Alto-Costa A (2015) Low-level red laser improves healing of second-degree burn when applied during proliferative phase. Lasers Med Sci 30:1297–1304CrossRefPubMed
65.
go back to reference Yang J, Wang S, Dong L, An X, Li Y, Li J, Tu Y, Tao J (2016) Skin healing and collagen changes of rats after fractional erbium:yttrium aluminum garnet laser: observation by reflectance confocal microscopy with confirmed histological evidence. Lasers Med Sci 31:1251–1260CrossRefPubMed Yang J, Wang S, Dong L, An X, Li Y, Li J, Tu Y, Tao J (2016) Skin healing and collagen changes of rats after fractional erbium:yttrium aluminum garnet laser: observation by reflectance confocal microscopy with confirmed histological evidence. Lasers Med Sci 31:1251–1260CrossRefPubMed
66.
go back to reference de Medeiros ML, Araújo-Filho I, da Silva EM, de Sousa Queiroz WS, Soares CD, de Carvalho MG, Maciel MA (2017) Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci 32:35–43CrossRefPubMed de Medeiros ML, Araújo-Filho I, da Silva EM, de Sousa Queiroz WS, Soares CD, de Carvalho MG, Maciel MA (2017) Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci 32:35–43CrossRefPubMed
67.
go back to reference Lemos GA, Rissi R, de Souza Pires IL, de Oliveira LP, de Aro AA, Pimentel ER, Palomari ET (2016) Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med Sci 31:1051–1059CrossRefPubMed Lemos GA, Rissi R, de Souza Pires IL, de Oliveira LP, de Aro AA, Pimentel ER, Palomari ET (2016) Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med Sci 31:1051–1059CrossRefPubMed
68.
go back to reference Marques AC, Albertini R, Serra AJ, da Silva EA, de Oliveira VL, Silva LM, Leal-Junior EC, de Carvalho PT (2016) Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in experimentally induced tendinopathy in aged rats. Lasers Med Sci 31:1915–1923CrossRefPubMed Marques AC, Albertini R, Serra AJ, da Silva EA, de Oliveira VL, Silva LM, Leal-Junior EC, de Carvalho PT (2016) Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in experimentally induced tendinopathy in aged rats. Lasers Med Sci 31:1915–1923CrossRefPubMed
69.
go back to reference Kamal W, George J, Manssor E (2017) Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med Sci 32:297–303CrossRefPubMed Kamal W, George J, Manssor E (2017) Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med Sci 32:297–303CrossRefPubMed
70.
go back to reference Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108:29–34CrossRefPubMed Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108:29–34CrossRefPubMed
71.
go back to reference Prianti AC Jr, Silva JA Jr, Dos Santos RF, Rosseti IB, Costa MS (2014) Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci 29:1397–1403PubMed Prianti AC Jr, Silva JA Jr, Dos Santos RF, Rosseti IB, Costa MS (2014) Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci 29:1397–1403PubMed
72.
go back to reference Yassaei S, Aghili H, Afshari JT, Bagherpour A, Eslami F (2016) Effects of diode laser (980 nm) on orthodontic tooth movement and interleukin 6 levels in gingival crevicular fluid in female subjects. Lasers Med Sci 31:1751–1759CrossRefPubMed Yassaei S, Aghili H, Afshari JT, Bagherpour A, Eslami F (2016) Effects of diode laser (980 nm) on orthodontic tooth movement and interleukin 6 levels in gingival crevicular fluid in female subjects. Lasers Med Sci 31:1751–1759CrossRefPubMed
73.
go back to reference Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-Dos-Santos-Franco A (2015) Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS ONE 10:e0142816CrossRefPubMedPubMedCentral Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-Dos-Santos-Franco A (2015) Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS ONE 10:e0142816CrossRefPubMedPubMedCentral
74.
go back to reference Silveira PC, Scheffer Dda L, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, Latini A (2016) Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 50:503–513CrossRefPubMed Silveira PC, Scheffer Dda L, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, Latini A (2016) Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 50:503–513CrossRefPubMed
75.
go back to reference de Oliveira VL, Silva JA Jr, Serra AJ, Pallotta RC, da Silva EA, de Farias Marques AC, Feliciano RD, Marcos RL, Leal-Junior EC, de Carvalho PT (2017) Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 32:87–94CrossRefPubMed de Oliveira VL, Silva JA Jr, Serra AJ, Pallotta RC, da Silva EA, de Farias Marques AC, Feliciano RD, Marcos RL, Leal-Junior EC, de Carvalho PT (2017) Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 32:87–94CrossRefPubMed
76.
go back to reference Rezaei Kanavi M, Tabeie F, Sahebjam F, Poursani N, Jahanbakhsh N, Paymanpour P, AfsarAski S (2016) Short-term effects of extremely low-frequency pulsed electromagnetic field and pulsed low-level laser therapy on rabbit model of corneal alkali burn. Exp Eye Res 145:216–223CrossRefPubMed Rezaei Kanavi M, Tabeie F, Sahebjam F, Poursani N, Jahanbakhsh N, Paymanpour P, AfsarAski S (2016) Short-term effects of extremely low-frequency pulsed electromagnetic field and pulsed low-level laser therapy on rabbit model of corneal alkali burn. Exp Eye Res 145:216–223CrossRefPubMed
77.
go back to reference Gelatt KN (1977) Animal models for glaucoma. Invest Ophthalmol Vis Sci 16:592–596PubMed Gelatt KN (1977) Animal models for glaucoma. Invest Ophthalmol Vis Sci 16:592–596PubMed
78.
go back to reference Podos SM (1976) Animal models of human glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:OP632–OP635PubMed Podos SM (1976) Animal models of human glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:OP632–OP635PubMed
79.
go back to reference Gherezghiher T, March WF, Nordquist RE, Koss MC (1986) Laser-induced glaucoma in rabbits. Exp Eye Res 43:885–894CrossRefPubMed Gherezghiher T, March WF, Nordquist RE, Koss MC (1986) Laser-induced glaucoma in rabbits. Exp Eye Res 43:885–894CrossRefPubMed
80.
go back to reference Lauber JK (1987) Light-induced avian glaucoma as an animal model for human primary glaucoma. J Ocul Pharmacol 3:77–100CrossRefPubMed Lauber JK (1987) Light-induced avian glaucoma as an animal model for human primary glaucoma. J Ocul Pharmacol 3:77–100CrossRefPubMed
82.
go back to reference Johnson B, House P, Morgan W, Sun X, Yu DY (1999) Developing laser-induced glaucoma in rabbits. Aust N Z J Ophthalmol 27:180–183CrossRefPubMed Johnson B, House P, Morgan W, Sun X, Yu DY (1999) Developing laser-induced glaucoma in rabbits. Aust N Z J Ophthalmol 27:180–183CrossRefPubMed
83.
go back to reference Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN (2003) Optic nerve damage in experimental mouse ocular hypertension. Invest Ophthalmol Vis Sci 44:4321–4330CrossRefPubMed Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN (2003) Optic nerve damage in experimental mouse ocular hypertension. Invest Ophthalmol Vis Sci 44:4321–4330CrossRefPubMed
84.
go back to reference Steinhart MR, Cone FE, Nguyen C, Nguyen TD, Pease ME, Puk O, Graw J, Oglesby EN, Quigley HA (2012) Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Mol Vis 18:1093–1106PubMedPubMedCentral Steinhart MR, Cone FE, Nguyen C, Nguyen TD, Pease ME, Puk O, Graw J, Oglesby EN, Quigley HA (2012) Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Mol Vis 18:1093–1106PubMedPubMedCentral
85.
go back to reference Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 61:379–382CrossRefPubMed Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 61:379–382CrossRefPubMed
86.
go back to reference Kipfer-Kauer A, McKinnon SJ, Frueh BE, Goldblum D (2010) Distribution of amyloid precursor protein and amyloid-β in ocular hypertensive C57BL/6 mouse eyes. Curr Eye Res 35:828–834CrossRefPubMedPubMedCentral Kipfer-Kauer A, McKinnon SJ, Frueh BE, Goldblum D (2010) Distribution of amyloid precursor protein and amyloid-β in ocular hypertensive C57BL/6 mouse eyes. Curr Eye Res 35:828–834CrossRefPubMedPubMedCentral
87.
go back to reference Agar A, Li S, Agarwal N, Coroneo MT, Hill MA (2006) Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 1086:191–200CrossRefPubMed Agar A, Li S, Agarwal N, Coroneo MT, Hill MA (2006) Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 1086:191–200CrossRefPubMed
88.
go back to reference Liu Q, Ju WK, Crowston JG, Xie F, Perry G, Smith MA, Lindsey JD, Weinreb RN (2007) Oxidative stress is an early event in hydrostatic pressure-induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 48:4580–4589CrossRefPubMed Liu Q, Ju WK, Crowston JG, Xie F, Perry G, Smith MA, Lindsey JD, Weinreb RN (2007) Oxidative stress is an early event in hydrostatic pressure-induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 48:4580–4589CrossRefPubMed
89.
go back to reference Lei Y, Rajabi S, Pedrigi RM, Overby DR, Read AT, Ethier CR (2011) In vitro models for glaucoma research: effects of hydrostatic pressure. Invest Ophthalmol Vis Sci 52:6329–6339CrossRefPubMed Lei Y, Rajabi S, Pedrigi RM, Overby DR, Read AT, Ethier CR (2011) In vitro models for glaucoma research: effects of hydrostatic pressure. Invest Ophthalmol Vis Sci 52:6329–6339CrossRefPubMed
90.
go back to reference You Y, Gupta VK, Li JC, Al-Adawy N, Klistorner A, Graham SL (2014) FTY720 protects retinal ganglion cells in experimental glaucoma. Invest Ophthalmol Vis Sci 55:3060–3066CrossRefPubMed You Y, Gupta VK, Li JC, Al-Adawy N, Klistorner A, Graham SL (2014) FTY720 protects retinal ganglion cells in experimental glaucoma. Invest Ophthalmol Vis Sci 55:3060–3066CrossRefPubMed
91.
go back to reference Reigada D, Lu W, Zhang M, Mitchell CH (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396–404CrossRefPubMedPubMedCentral Reigada D, Lu W, Zhang M, Mitchell CH (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396–404CrossRefPubMedPubMedCentral
92.
go back to reference Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y (2010) Effects of acutely elevated hydrostatic pressure in a rat ex vivo retinal preparation. Invest Ophthalmol Vis Sci 51:6414–6423CrossRefPubMedPubMedCentral Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y (2010) Effects of acutely elevated hydrostatic pressure in a rat ex vivo retinal preparation. Invest Ophthalmol Vis Sci 51:6414–6423CrossRefPubMedPubMedCentral
93.
go back to reference McKinnon SJ, Schlamp CL, Nickells RW (2009) Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 88:816–824CrossRefPubMed McKinnon SJ, Schlamp CL, Nickells RW (2009) Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 88:816–824CrossRefPubMed
95.
go back to reference Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DM, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805CrossRefPubMedPubMedCentral Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DM, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805CrossRefPubMedPubMedCentral
96.
go back to reference Morries LD, Cassano P, Henderson TA (2015) Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat 11:2159–2175PubMedPubMedCentral Morries LD, Cassano P, Henderson TA (2015) Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat 11:2159–2175PubMedPubMedCentral
97.
go back to reference Arany PR (2016) Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res 95:977–984CrossRefPubMed Arany PR (2016) Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res 95:977–984CrossRefPubMed
98.
go back to reference Bordvik DH, Haslerud S, Naterstad IF, Lopes-Martins RAB, Leal Junior ECP, Bjordal JM, Joensen J (2017) Penetration time profiles for two class 3B lasers in in situ human achilles at rest and stretched. Photomed Laser Surg 35:546–554CrossRefPubMed Bordvik DH, Haslerud S, Naterstad IF, Lopes-Martins RAB, Leal Junior ECP, Bjordal JM, Joensen J (2017) Penetration time profiles for two class 3B lasers in in situ human achilles at rest and stretched. Photomed Laser Surg 35:546–554CrossRefPubMed
Metadata
Title
Could adverse effects and complications of selective laser trabeculoplasty be decreased by low-power laser therapy?
Authors
Alexandre de Carvalho Mendes Paiva
Adenilson de Souza da Fonseca
Publication date
01-01-2019
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 1/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-017-0775-0

Other articles of this Issue 1/2019

International Ophthalmology 1/2019 Go to the issue