Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2015

Open Access 01-12-2015 | Letter to the Editor

Cost effective assay choice for rare disease study designs

Authors: Desmond D Campbell, Robert M Porsch, Stacey S Cherny, Valeria Capra, Elisa Merello, Patrizia De Marco, Pak C Sham, Maria-Mercè Garcia-Barceló

Published in: Orphanet Journal of Rare Diseases | Issue 1/2015

Login to get access

Abstract

High throughput assays tend to be expensive per subject. Often studies are limited not so much by the number of subjects available as by assay costs, making assay choice a critical issue. We have developed a framework for assay choice that maximises the number of true disease causing mechanisms ‘seen’, given limited resources. Although straightforward, some of the ramifications of our methodology run counter to received wisdom on study design. We illustrate our methodology with examples, and have built a website allowing calculation of quantities of interest to those designing rare disease studies.
Literature
1.
go back to reference Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14:681–91.CrossRefPubMed Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14:681–91.CrossRefPubMed
2.
go back to reference The Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet. 2014;46:818–25.CrossRef The Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet. 2014;46:818–25.CrossRef
3.
go back to reference Cassa CA, Tong MY, Jordan DM. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat. 2013;34:1216–20.CrossRefPubMedCentralPubMed Cassa CA, Tong MY, Jordan DM. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat. 2013;34:1216–20.CrossRefPubMedCentralPubMed
5.
go back to reference Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31:391–406.CrossRefPubMed Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31:391–406.CrossRefPubMed
6.
go back to reference Rothman KJ. Reviews and commentary. Causes. m J Epidemiol. 1976;104:587–92. Rothman KJ. Reviews and commentary. Causes. m J Epidemiol. 1976;104:587–92.
7.
go back to reference Sanderson S, Zimmern R, Kroese M, Higgins J, Patch C, Emery J. How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom. Genet Med. 2005;7:495–500.CrossRefPubMed Sanderson S, Zimmern R, Kroese M, Higgins J, Patch C, Emery J. How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom. Genet Med. 2005;7:495–500.CrossRefPubMed
9.
go back to reference Semba K, Ki Y. Etiology of caudal regression syndrome. Hum Genet Embryol. 2013;3:2161–0436.1000.CrossRef Semba K, Ki Y. Etiology of caudal regression syndrome. Hum Genet Embryol. 2013;3:2161–0436.1000.CrossRef
10.
go back to reference Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, et al. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev. 2008;22:1465–77.CrossRefPubMedCentralPubMed Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, et al. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev. 2008;22:1465–77.CrossRefPubMedCentralPubMed
11.
go back to reference Rittler M, Paz JE, Castilla EE. VACTERL association, epidemiologic definition and delineation. Am J Med Genet. 1996;63:529–36.CrossRefPubMed Rittler M, Paz JE, Castilla EE. VACTERL association, epidemiologic definition and delineation. Am J Med Genet. 1996;63:529–36.CrossRefPubMed
13.
go back to reference Kaciński M, Jaworek M, Skowronek-Bała B. Caudal regression syndrome associated with the white matter lesions and chromosome 18p11.2 deletion. Brain Dev. 2007;29:164–6.CrossRefPubMed Kaciński M, Jaworek M, Skowronek-Bała B. Caudal regression syndrome associated with the white matter lesions and chromosome 18p11.2 deletion. Brain Dev. 2007;29:164–6.CrossRefPubMed
14.
go back to reference Merello E, De Marco P, Ravegnani M, Riccipetitoni G, Cama A, Capra V. Novel MNX1 mutations and clinical analysis of familial and sporadic Currarino cases. Eur J Med Genet. 2013;56:648–54.CrossRefPubMed Merello E, De Marco P, Ravegnani M, Riccipetitoni G, Cama A, Capra V. Novel MNX1 mutations and clinical analysis of familial and sporadic Currarino cases. Eur J Med Genet. 2013;56:648–54.CrossRefPubMed
15.
go back to reference Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12.CrossRefPubMedCentralPubMed Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12.CrossRefPubMedCentralPubMed
16.
go back to reference Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ, et al. De novo rates and selection of large copy number variation. Genome Res. 2010;20:1469–81.CrossRefPubMedCentralPubMed Itsara A, Wu H, Smith JD, Nickerson DA, Romieu I, London SJ, et al. De novo rates and selection of large copy number variation. Genome Res. 2010;20:1469–81.CrossRefPubMedCentralPubMed
17.
go back to reference Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet. 2012;44:1277–81.CrossRefPubMedCentralPubMed Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet. 2012;44:1277–81.CrossRefPubMedCentralPubMed
18.
go back to reference Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–7.CrossRefPubMed Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–7.CrossRefPubMed
19.
go back to reference De Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. N Engl J Med. 2012;367:1921–9.CrossRefPubMed De Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. N Engl J Med. 2012;367:1921–9.CrossRefPubMed
20.
go back to reference Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, Coe BP, Project NNES, Quinlan AR, Nickerson DA, Eichler EE: Copy number variation detection and genotyping from exome sequence data. Genome Res 2012:gr.138115.112. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, Coe BP, Project NNES, Quinlan AR, Nickerson DA, Eichler EE: Copy number variation detection and genotyping from exome sequence data. Genome Res 2012:gr.138115.112.
21.
go back to reference Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics. 2012;28:2747–54.CrossRefPubMedCentralPubMed Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics. 2012;28:2747–54.CrossRefPubMedCentralPubMed
22.
go back to reference Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28:1307–13.CrossRefPubMedCentralPubMed Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28:1307–13.CrossRefPubMedCentralPubMed
23.
go back to reference Magi A, Tattini L, Cifola I, D’Aurizio R, Benelli M, Mangano E, et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 2013;14:R120.CrossRefPubMedCentralPubMed Magi A, Tattini L, Cifola I, D’Aurizio R, Benelli M, Mangano E, et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 2013;14:R120.CrossRefPubMedCentralPubMed
24.
go back to reference Tan R, Wang Y, Kleinstein SE, Liu Y, Zhu X, Guo H, et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum Mutat. 2014;35:899–907.CrossRefPubMed Tan R, Wang Y, Kleinstein SE, Liu Y, Zhu X, Guo H, et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum Mutat. 2014;35:899–907.CrossRefPubMed
25.
go back to reference Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci. 2009;106:9362–7.CrossRefPubMedCentralPubMed Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci. 2009;106:9362–7.CrossRefPubMedCentralPubMed
26.
go back to reference Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.CrossRefPubMed Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.CrossRefPubMed
27.
go back to reference Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91.CrossRefPubMed Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91.CrossRefPubMed
Metadata
Title
Cost effective assay choice for rare disease study designs
Authors
Desmond D Campbell
Robert M Porsch
Stacey S Cherny
Valeria Capra
Elisa Merello
Patrizia De Marco
Pak C Sham
Maria-Mercè Garcia-Barceló
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2015
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-015-0226-9

Other articles of this Issue 1/2015

Orphanet Journal of Rare Diseases 1/2015 Go to the issue