Skip to main content
Top
Published in: Archives of Dermatological Research 4/2017

01-05-2017 | Original Paper

Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells

Authors: Hang Ma, Jialin Xu, Nicholas A. DaSilva, Ling Wang, Zhengxi Wei, Liangran Guo, Shelby L. Johnson, Wei Lu, Jun Xu, Qiong Gu, Navindra P. Seeram

Published in: Archives of Dermatological Research | Issue 4/2017

Login to get access

Abstract

The red maple (Acer rubrum) is a rich source of phenolic compounds which possess galloyl groups attached to different positions of a 1,5-anhydro-d-glucitol core. While these glucitol-core containing gallotannins (GCGs) have reported anti-oxidant and anti-glycative effects, they have not yet been evaluated for their cosmetic applications. Herein, the anti-tyrosinase and anti-melanogenic effects of a proprietary phenolic-enriched red maple leaves extract [Maplifa; contains ca. 45% ginnalin A (GA) along with other GCGs] were investigated using enzyme and cellular assays. The GCGs showed anti-tyrosinase activity with IC50 values ranging from 101.4 to 1047.3 μM and their mechanism of tyrosinase inhibition (using GA as a representative GCG) was evaluated by chelating and computational/modeling studies. GA reduced melanin content in murine melanoma B16F10 cells by 79.1 and 56.7% (at non-toxic concentrations of 25 and 50 μM, respectively), and its mechanisms of anti-melanogenic effects were evaluated by using methods including fluorescent probe (DCF-DA), real-time PCR, and western blot experiments. These data indicated that GA was able to: (1) reduce the levels of reactive oxygen species, (2) down-regulate the expression of MITF, TYR, TRP-1, and TRP-2 gene levels in a time-dependent manner, and (3) significantly reduce protein expression of the TRP-2 gene. Therefore, the anti-melanogenic effects of red maple GCGs warrant further investigation of this proprietary natural product extract for potential cosmetic applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228CrossRefPubMed Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228CrossRefPubMed
2.
go back to reference Costin G-E, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994CrossRefPubMed Costin G-E, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994CrossRefPubMed
4.
go back to reference Akazawa H, Akihisa T, Taguchi Y, Banno N, Yoneima R, Yasukawa K (2006) Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol Pharm Bull 29:1970–1972CrossRefPubMed Akazawa H, Akihisa T, Taguchi Y, Banno N, Yoneima R, Yasukawa K (2006) Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol Pharm Bull 29:1970–1972CrossRefPubMed
5.
go back to reference Akihisa T, Takeda A, Akazawa H, Kikuchi T, Yokokawa S, Ukiya M, Fukatsu M, Watanabe K (2012) Melanogenesis-inhibitory and cytotoxic activities of diarylheptanoids from Acer nikoense bark and their derivatives. Chem Biodivers 9:1475–1489CrossRefPubMed Akihisa T, Takeda A, Akazawa H, Kikuchi T, Yokokawa S, Ukiya M, Fukatsu M, Watanabe K (2012) Melanogenesis-inhibitory and cytotoxic activities of diarylheptanoids from Acer nikoense bark and their derivatives. Chem Biodivers 9:1475–1489CrossRefPubMed
6.
go back to reference Arnason T, Hebda RJ, Johns T (1981) Use of plants for food and medicine by native peoples of eastern Canada. Can J Botany 59:2189–2325CrossRef Arnason T, Hebda RJ, Johns T (1981) Use of plants for food and medicine by native peoples of eastern Canada. Can J Botany 59:2189–2325CrossRef
7.
go back to reference Royer M, Prado M, García-Pérez ME, Diouf PN, Stevanovic T (2013) Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 1:158–167CrossRef Royer M, Prado M, García-Pérez ME, Diouf PN, Stevanovic T (2013) Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 1:158–167CrossRef
8.
go back to reference Kwon BS (1993) Pigmentation genes: the tyrosinase gene family and the pmel 17 gene family. J Invest Dermatol 100:134S–140CrossRef Kwon BS (1993) Pigmentation genes: the tyrosinase gene family and the pmel 17 gene family. J Invest Dermatol 100:134S–140CrossRef
9.
go back to reference Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron J, Hearing V (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825PubMedPubMedCentral Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron J, Hearing V (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825PubMedPubMedCentral
10.
go back to reference Yasumoto K-i, Yokoyama K, Shibata K, Tomita Y, Shibahara S (1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol 14:8058–8070CrossRefPubMedPubMedCentral Yasumoto K-i, Yokoyama K, Shibata K, Tomita Y, Shibahara S (1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol 14:8058–8070CrossRefPubMedPubMedCentral
11.
go back to reference Westerhof W, Kooyers T (2005) Hydroquinone and its analogues in dermatology—a potential health risk. J Cosmet Dermatol 4:55–59CrossRefPubMed Westerhof W, Kooyers T (2005) Hydroquinone and its analogues in dermatology—a potential health risk. J Cosmet Dermatol 4:55–59CrossRefPubMed
12.
go back to reference Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20:921–934CrossRefPubMed Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20:921–934CrossRefPubMed
13.
go back to reference González-Sarrías A, Li L, Seeram NP (2012) Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of fuman tumorigenic and non-tumorigenic colon cells. Phytother Res 26:995–1002CrossRefPubMed González-Sarrías A, Li L, Seeram NP (2012) Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of fuman tumorigenic and non-tumorigenic colon cells. Phytother Res 26:995–1002CrossRefPubMed
14.
go back to reference González-Sarrías A, Ma H, Edmonds ME, Seeram NP (2013) Maple polyphenols, ginnalins A-C, induce S-and G2/M-cell cycle arrest in colon and breast cancer cells mediated by decreasing cyclins A and D1 levels. Food Chem 136:636–642CrossRefPubMed González-Sarrías A, Ma H, Edmonds ME, Seeram NP (2013) Maple polyphenols, ginnalins A-C, induce S-and G2/M-cell cycle arrest in colon and breast cancer cells mediated by decreasing cyclins A and D1 levels. Food Chem 136:636–642CrossRefPubMed
15.
go back to reference González-Sarrías A, Yuan T, Seeram NP (2012) Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem Toxicol 50:1369–1376CrossRefPubMed González-Sarrías A, Yuan T, Seeram NP (2012) Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem Toxicol 50:1369–1376CrossRefPubMed
16.
go back to reference Liu W, Wei Z, Ma H, Cai A, Liu Y, Sun J, DaSilva N, Johnson S, Kirschenbaum LJ, Cho B, Dain JA, Rowley DR, Shaikh ZA, Seeram NP (2017) Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells. Food Funct 8:757–766CrossRefPubMed Liu W, Wei Z, Ma H, Cai A, Liu Y, Sun J, DaSilva N, Johnson S, Kirschenbaum LJ, Cho B, Dain JA, Rowley DR, Shaikh ZA, Seeram NP (2017) Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells. Food Funct 8:757–766CrossRefPubMed
17.
go back to reference Ma H, DaSilva NA, Liu W, Nahar PP, Wei Z, Liu Y, Pham PT, Crews R, Vattem DA, Slitt AL, Shaikh ZA, Seeram NP (2016) Effects of a standardized phenolic-enriched maple syrup extract on β-amyloid aggregation, neuroinflammation in microglial and neuronal cells, and β-amyloid induced neurotoxicity in Caenorhabditis elegans. Neurochem Res 41:2836–2847CrossRefPubMed Ma H, DaSilva NA, Liu W, Nahar PP, Wei Z, Liu Y, Pham PT, Crews R, Vattem DA, Slitt AL, Shaikh ZA, Seeram NP (2016) Effects of a standardized phenolic-enriched maple syrup extract on β-amyloid aggregation, neuroinflammation in microglial and neuronal cells, and β-amyloid induced neurotoxicity in Caenorhabditis elegans. Neurochem Res 41:2836–2847CrossRefPubMed
18.
go back to reference Ma H, Liu W, Frost L, Kirschenbaum LJ, Dain JA, Seeram NP (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 5:2213–2222CrossRef Ma H, Liu W, Frost L, Kirschenbaum LJ, Dain JA, Seeram NP (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 5:2213–2222CrossRef
19.
go back to reference Ma H, Wang L, Niesen DB, Cai A, Cho BP, Tan W, Gu Q, Xu J, Seeram NP (2015) Structure activity related, mechanistic, and modeling studies of gallotannins containing a glucitol-core and α-glucosidase. RSC Adv 130:107904–107915CrossRef Ma H, Wang L, Niesen DB, Cai A, Cho BP, Tan W, Gu Q, Xu J, Seeram NP (2015) Structure activity related, mechanistic, and modeling studies of gallotannins containing a glucitol-core and α-glucosidase. RSC Adv 130:107904–107915CrossRef
20.
go back to reference Muhsinah AB, Ma H, DaSilva NA, Tuan T, Seeram NP (2017) Bioactive glucitol-core containing gallotannins and other phytochemicals from silver maple (Acer saccharinum) leaves. Nat Prod Commun 12:83–84 Muhsinah AB, Ma H, DaSilva NA, Tuan T, Seeram NP (2017) Bioactive glucitol-core containing gallotannins and other phytochemicals from silver maple (Acer saccharinum) leaves. Nat Prod Commun 12:83–84
21.
go back to reference Yuan T, Wan C, Liu K, Seeram NP (2012) New maplexins F-I and phenolic glycosides from red maple (Acer rubrum) bark. Tetrahedron 68:959–964CrossRef Yuan T, Wan C, Liu K, Seeram NP (2012) New maplexins F-I and phenolic glycosides from red maple (Acer rubrum) bark. Tetrahedron 68:959–964CrossRef
22.
go back to reference Zhang Y, Ma H, Yuan T, Seeram NP (2015) Red maple (Acer rubrum) aerial parts as a source of bioactive phenolics. Nat Prod Commun 10:1409–1412PubMed Zhang Y, Ma H, Yuan T, Seeram NP (2015) Red maple (Acer rubrum) aerial parts as a source of bioactive phenolics. Nat Prod Commun 10:1409–1412PubMed
23.
go back to reference Wan C, Yuan T, Li L, Kandhi V, Cech NB, Xie M, Seeram NP (2012) Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorg Med Chem Lett 22:597–600CrossRefPubMed Wan C, Yuan T, Li L, Kandhi V, Cech NB, Xie M, Seeram NP (2012) Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorg Med Chem Lett 22:597–600CrossRefPubMed
24.
go back to reference Deering RW, Chen J, Sun J, Ma H, Dubert J, Barja JL, Seeram NP, Wang H, Rowley DC (2016) N-acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J Nat Prod 79:447–450CrossRefPubMed Deering RW, Chen J, Sun J, Ma H, Dubert J, Barja JL, Seeram NP, Wang H, Rowley DC (2016) N-acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J Nat Prod 79:447–450CrossRefPubMed
25.
go back to reference Noh J-M, Lee Y-S (2011) Inhibitory activities of hydroxyphenolic acid-amino acid conjugates on tyrosinase. Food Chem 125:953–957CrossRef Noh J-M, Lee Y-S (2011) Inhibitory activities of hydroxyphenolic acid-amino acid conjugates on tyrosinase. Food Chem 125:953–957CrossRef
26.
go back to reference Chou TH, Ding HY, Hung WJ, Liang CH (2010) Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol 19:742–750CrossRefPubMed Chou TH, Ding HY, Hung WJ, Liang CH (2010) Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol 19:742–750CrossRefPubMed
27.
go back to reference Kubo I, Kinst-Hori I, Chaudhuri SK, Kubo Y, Sánchez Y, Ogura T (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 7:1749–1755CrossRef Kubo I, Kinst-Hori I, Chaudhuri SK, Kubo Y, Sánchez Y, Ogura T (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 7:1749–1755CrossRef
28.
go back to reference Curto EV, Kwong C, Hermersdörfer H, Glatt H, Santis C, Virador V, Hearing VJ, Dooley TP (1999) Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 57:663–672CrossRefPubMed Curto EV, Kwong C, Hermersdörfer H, Glatt H, Santis C, Virador V, Hearing VJ, Dooley TP (1999) Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 57:663–672CrossRefPubMed
29.
go back to reference Bi W, Gao Y, Shen J, He C, Liu H, Peng Y, Zhang C, Xiao P (2016) Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): a review. J Ethnopharmacol 189:31–60CrossRefPubMed Bi W, Gao Y, Shen J, He C, Liu H, Peng Y, Zhang C, Xiao P (2016) Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): a review. J Ethnopharmacol 189:31–60CrossRefPubMed
30.
go back to reference Kamori A, Kato A, Miyawaki S, Koyama J, Nash RJ, Fleet GW, Miura D, Ishikawa F, Adachi I (2016) Dual action of acertannins as potential regulators of intracellular ceramide levels. Tetrahedron Asymmetr 27:1177–1185CrossRef Kamori A, Kato A, Miyawaki S, Koyama J, Nash RJ, Fleet GW, Miura D, Ishikawa F, Adachi I (2016) Dual action of acertannins as potential regulators of intracellular ceramide levels. Tetrahedron Asymmetr 27:1177–1185CrossRef
31.
go back to reference Su TR, Lin JJ, Tsai CC, Huang TK, Yang ZY, Wu MO, Zheng YQ, Su CC, Wu YJ (2013) Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 14:20443–20458CrossRefPubMedPubMedCentral Su TR, Lin JJ, Tsai CC, Huang TK, Yang ZY, Wu MO, Zheng YQ, Su CC, Wu YJ (2013) Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 14:20443–20458CrossRefPubMedPubMedCentral
Metadata
Title
Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells
Authors
Hang Ma
Jialin Xu
Nicholas A. DaSilva
Ling Wang
Zhengxi Wei
Liangran Guo
Shelby L. Johnson
Wei Lu
Jun Xu
Qiong Gu
Navindra P. Seeram
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Archives of Dermatological Research / Issue 4/2017
Print ISSN: 0340-3696
Electronic ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-017-1728-1

Other articles of this Issue 4/2017

Archives of Dermatological Research 4/2017 Go to the issue