Skip to main content
Top
Published in: Neuroradiology 7/2013

01-07-2013 | Functional Neuroradiology

Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study

Authors: Limin Sun, Dazhi Yin, Yulian Zhu, Mingxia Fan, Lili Zang, Yi Wu, Jie Jia, Yulong Bai, Bing Zhu, Yongshan Hu

Published in: Neuroradiology | Issue 7/2013

Login to get access

Abstract

Introduction

Despite its clinical efficacy, few studies have examined the neural mechanisms of motor imagery training (MIT) in stroke. Our objective was to find the cortical reorganization patterns after MIT in chronic stroke patients.

Methods

Twenty stroke patients with severe motor deficits were randomly assigned to the MIT or conventional rehabilitation therapy (CRT) group, but two lost in the follow-up. All 18 patients received CRT 5 days/week for 4 weeks. Nine subjects in the MIT group received 30-min MIT 5 days/week for 4 weeks. Before and after the interventions, the upper limb section of the Fugl–Meyer Scale (FM-UL) was blindly evaluated, and functional magnetic resonance imaging was administered while the patients executed a passive fist clutch task.

Results

Two cortical reorganization patterns were found. One pattern consisted of the growth in activation in the contralateral sensorimotor cortex (cSMC) for most patients (six in the MIT group, five in the CRT group), and the other consisted of focusing of the activation in the cSMC with increasing of the laterality index of the SMC for a small portion of patients (three in the MIT group, one in the CRT group). When we applied correlation analyses to the variables of relative ΔcSMC and ΔFM-UL in the 11 patients who experienced the first pattern, a positive relationship was detected.

Conclusions

Our results indicate that different cortical reorganization patterns (increases in or focusing of recruitment to the cSMC region) exist in chronic stroke patients after interventions, and patients may choose efficient patterns to improve their motor function.
Literature
1.
go back to reference Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J (1992) Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23(8):1084–1089PubMedCrossRef Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J (1992) Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23(8):1084–1089PubMedCrossRef
2.
go back to reference Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146. doi:10.1161/CIRCULATIONAHA.107.187998 PubMedCrossRef Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146. doi:10.​1161/​CIRCULATIONAHA.​107.​187998 PubMedCrossRef
3.
go back to reference Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112(Pt 3):749–763PubMedCrossRef Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112(Pt 3):749–763PubMedCrossRef
9.
go back to reference Page SJ, Levine P, Sisto S, Johnston MV (2001) A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 15(3):233–240PubMedCrossRef Page SJ, Levine P, Sisto S, Johnston MV (2001) A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 15(3):233–240PubMedCrossRef
11.
go back to reference Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC (2009) Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair 23(4):382–388. doi:10.1177/1545968308326427 PubMed Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC (2009) Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair 23(4):382–388. doi:10.​1177/​1545968308326427​ PubMed
13.
go back to reference Cramer SC, Bastings EP (2000) Mapping clinically relevant plasticity after stroke. Neuropharmacology 39(5):842–851PubMedCrossRef Cramer SC, Bastings EP (2000) Mapping clinically relevant plasticity after stroke. Neuropharmacology 39(5):842–851PubMedCrossRef
16.
go back to reference Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129(Pt 3):791–808. doi:10.1093/brain/awh713 PubMedCrossRef Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129(Pt 3):791–808. doi:10.​1093/​brain/​awh713 PubMedCrossRef
17.
go back to reference Seitz RJ, Huang Y, Knorr U, Tellmann L, Herzog H, Freund HJ (1995) Large-scale plasticity of the human motor cortex. Neuroreport 6(5):742–744PubMedCrossRef Seitz RJ, Huang Y, Knorr U, Tellmann L, Herzog H, Freund HJ (1995) Large-scale plasticity of the human motor cortex. Neuroreport 6(5):742–744PubMedCrossRef
18.
go back to reference Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31(3):656–661PubMedCrossRef Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31(3):656–661PubMedCrossRef
19.
go back to reference Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 32(11):2534–2542PubMedCrossRef Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 32(11):2534–2542PubMedCrossRef
20.
go back to reference Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125(Pt 12):2731–2742PubMedCrossRef Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125(Pt 12):2731–2742PubMedCrossRef
21.
go back to reference Brunnstrom S (1966) Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther 46(4):357–375PubMed Brunnstrom S (1966) Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther 46(4):357–375PubMed
22.
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRef
23.
go back to reference Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67(2):206–207PubMed Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67(2):206–207PubMed
24.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31PubMed Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31PubMed
25.
go back to reference Liu KP, Chan CC, Lee TM, Hui-Chan CW (2004) Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil 85(9):1403–1408PubMedCrossRef Liu KP, Chan CC, Lee TM, Hui-Chan CW (2004) Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil 85(9):1403–1408PubMedCrossRef
26.
go back to reference Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl–Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63(10):1606–1610PubMed Duncan PW, Propst M, Nelson SG (1983) Reliability of the Fugl–Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63(10):1606–1610PubMed
27.
go back to reference Di Fabio RP, Badke MB (1990) Relationship of sensory organization to balance function in patients with hemiplegia. Phys Ther 70(9):542–548PubMed Di Fabio RP, Badke MB (1990) Relationship of sensory organization to balance function in patients with hemiplegia. Phys Ther 70(9):542–548PubMed
28.
go back to reference Friston KJ (1998) Imaging neuroscience: principles or maps? Proc Natl Acad Sci U S A 95(3):796–802PubMedCrossRef Friston KJ (1998) Imaging neuroscience: principles or maps? Proc Natl Acad Sci U S A 95(3):796–802PubMedCrossRef
29.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289. doi:10.1006/nimg.2001.0978 PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289. doi:10.​1006/​nimg.​2001.​0978 PubMedCrossRef
30.
go back to reference Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28(12):2518–2527PubMedCrossRef Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28(12):2518–2527PubMedCrossRef
32.
go back to reference Lee CC, Jack CR Jr, Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR Am J Neuroradiol 19(5):847–852PubMed Lee CC, Jack CR Jr, Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR Am J Neuroradiol 19(5):847–852PubMed
34.
go back to reference Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD, Gore JC, Allison T (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83(2):262–270. doi:10.3171/jns.1995.83.2.0262 PubMedCrossRef Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD, Gore JC, Allison T (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83(2):262–270. doi:10.​3171/​jns.​1995.​83.​2.​0262 PubMedCrossRef
35.
go back to reference Yetkin FZ, Mueller WM, Hammeke TA, Morris GL 3rd, Haughton VM (1995) Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery 36(5):921–925PubMedCrossRef Yetkin FZ, Mueller WM, Hammeke TA, Morris GL 3rd, Haughton VM (1995) Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery 36(5):921–925PubMedCrossRef
37.
go back to reference Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55(8):1081–1088PubMedCrossRef Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55(8):1081–1088PubMedCrossRef
38.
go back to reference Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122(Pt 10):1989–1997PubMedCrossRef Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122(Pt 10):1989–1997PubMedCrossRef
39.
go back to reference Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77(4–5):677–682PubMedCrossRef Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77(4–5):677–682PubMedCrossRef
40.
go back to reference Loubinoux I, Dechaumont-Palacin S, Castel-Lacanal E, De Boissezon X, Marque P, Pariente J, Albucher JF, Berry I, Chollet F (2007) Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb Cortex 17(12):2980–2987. doi:10.1093/cercor/bhm023 PubMedCrossRef Loubinoux I, Dechaumont-Palacin S, Castel-Lacanal E, De Boissezon X, Marque P, Pariente J, Albucher JF, Berry I, Chollet F (2007) Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb Cortex 17(12):2980–2987. doi:10.​1093/​cercor/​bhm023 PubMedCrossRef
42.
go back to reference Dong Y, Winstein CJ, Albistegui-DuBois R, Dobkin BH (2007) Evolution of FMRI activation in the perilesional primary motor cortex and cerebellum with rehabilitation training-related motor gains after stroke: a pilot study. Neurorehabil Neural Repair 21(5):412–428. doi:10.1177/1545968306298598 PubMedCrossRef Dong Y, Winstein CJ, Albistegui-DuBois R, Dobkin BH (2007) Evolution of FMRI activation in the perilesional primary motor cortex and cerebellum with rehabilitation training-related motor gains after stroke: a pilot study. Neurorehabil Neural Repair 21(5):412–428. doi:10.​1177/​1545968306298598​ PubMedCrossRef
45.
go back to reference Binkofski F, Seitz RJ (2004) Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 63(7):1223–1229PubMedCrossRef Binkofski F, Seitz RJ (2004) Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 63(7):1223–1229PubMedCrossRef
46.
go back to reference Askim T, Indredavik B, Vangberg T, Haberg A (2009) Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study. Neurorehabil Neural Repair 23(3):295–304. doi:10.1177/1545968308322840 PubMed Askim T, Indredavik B, Vangberg T, Haberg A (2009) Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study. Neurorehabil Neural Repair 23(3):295–304. doi:10.​1177/​1545968308322840​ PubMed
47.
48.
go back to reference Calautti C, Leroy F, Guincestre JY, Baron JC (2003) Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. NeuroImage 19(4):1650–1654PubMedCrossRef Calautti C, Leroy F, Guincestre JY, Baron JC (2003) Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. NeuroImage 19(4):1650–1654PubMedCrossRef
49.
go back to reference Rehme AK, Fink GR, von Cramon DY, Grefkes C (2011) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21(4):756–768. doi:10.1093/cercor/bhq140 PubMedCrossRef Rehme AK, Fink GR, von Cramon DY, Grefkes C (2011) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21(4):756–768. doi:10.​1093/​cercor/​bhq140 PubMedCrossRef
51.
52.
go back to reference Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier MA (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33(6):1610–1617PubMedCrossRef Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier MA (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33(6):1610–1617PubMedCrossRef
54.
go back to reference Lindberg P, Schmitz C, Forssberg H, Engardt M, Borg J (2004) Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: a pilot study. J Rehabil Med 36(3):117–123PubMedCrossRef Lindberg P, Schmitz C, Forssberg H, Engardt M, Borg J (2004) Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: a pilot study. J Rehabil Med 36(3):117–123PubMedCrossRef
Metadata
Title
Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study
Authors
Limin Sun
Dazhi Yin
Yulian Zhu
Mingxia Fan
Lili Zang
Yi Wu
Jie Jia
Yulong Bai
Bing Zhu
Yongshan Hu
Publication date
01-07-2013
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 7/2013
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-013-1188-z

Other articles of this Issue 7/2013

Neuroradiology 7/2013 Go to the issue