Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Research article

Correlation between the AMADEUS score and preoperative clinical patient-reported outcome measurements (PROMs) in patients undergoing matrix-induced autologous chondrocyte implantation (MACI)

Authors: Armin Runer, Pia Jungmann, Götz Welsch, Danica Kümmel, Franco Impellizzieri, Stefan Preiss, Gian Salzmann

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Recently, the AMADEUS (Area Measurement And DEpth Underlying Structures) grading system has been introduced to evaluate and grade osteochondral lesions prior to cartilage surgery. The AMADEUS score has not been connected to clinical data in order to test a potential clincial impact.

Purpose

To examine the correlation between the AMADEUS score and preoperative patient-reported outcome measurements (PROMs).

Study design

Case series

Methods

Patients treated with matrix-induced autologous chondrocyte implantation (MACI) were included in the study, unless exclusion criteria like BMI > 35, prior extensive meniscectomy or ongoing inflammatory arthritis were present. Preoperative magnetic resonance (MR) examinations were graded according to the standardized AMADEUS protocol. The final AMADEUS score was correlated with preoperative patient-reported outcome measurements (PROMs), including the IKDC (International Knee Documentation Committee), the Lysholm score, the Short-Form-12 (SF-12) score, and the Core Outcome Measures Index (COMI) score.

Results

A total of 50 patients with a mean age of 33.6 ± 11.5 years, a mean BMI of 25.1 ± 4.9, and a mean defect size of 2.3 ± 1.5 cm2 were included in the study. More severe cartilage defects, indicated by the AMADEUS grade (R = 0.35, p = 0.01) and the AMADEUS score (R = − 0.36, p = 0.01) as well as larger chondral defects (R = 0.32, p = 0.03) show a moderate correlation with the higher COMI scores. No correlative capacity was demonstrated for the AMADEUS score and the IKDC, Lysholm, and Tegner activity scores as well as for its subscales.

Conclusion

There is a moderate correlation of the COMI and the AMADEUS score in patients treated with matrix-induced autologous chondrocyte implantation (MACI). All other patient-reported outcome measurement scores (PROMs) show no evidence of an association to the magnetic resonance-based AMADEUS score.

Clinical relevance

The clinical and scientific implication of the COMI score as a PROM tool can be recommended when working with the AMADEUS score and patients undergoing MACI.
Literature
1.
go back to reference Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2010;18(4):519–27.CrossRef Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2010;18(4):519–27.CrossRef
2.
go back to reference Ebert JR, Robertson WB, Woodhouse J, Fallon M, Zheng MH, Ackland T, et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med. 2011;39(4):753–63.CrossRef Ebert JR, Robertson WB, Woodhouse J, Fallon M, Zheng MH, Ackland T, et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med. 2011;39(4):753–63.CrossRef
3.
go back to reference Outerbridge RE. The etiology of chondromalacia patellae. 1961. Clin Orthop Relat Res. 2001;389:5–8.CrossRef Outerbridge RE. The etiology of chondromalacia patellae. 1961. Clin Orthop Relat Res. 2001;389:5–8.CrossRef
4.
go back to reference Roos EM, Engelhart L, Ranstam J, Anderson AF, Irrgang JJ, Marx RG, et al. ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage. 2011;2(2):122–36.CrossRef Roos EM, Engelhart L, Ranstam J, Anderson AF, Irrgang JJ, Marx RG, et al. ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage. 2011;2(2):122–36.CrossRef
5.
go back to reference Jungmann PM, Welsch GH, Brittberg M, Trattnig S, Braun S, Imhoff AB, et al. Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage. 2017;8(3):272–82.CrossRef Jungmann PM, Welsch GH, Brittberg M, Trattnig S, Braun S, Imhoff AB, et al. Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage. 2017;8(3):272–82.CrossRef
6.
go back to reference Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee. 2016;23(3):426–35.CrossRef Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee. 2016;23(3):426–35.CrossRef
7.
go back to reference Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis care & research 2011;63 Suppl 11:S208–S228. Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis care & research 2011;63 Suppl 11:S208–S228.
8.
go back to reference Impellizzeri FM, Leunig M, Preiss S, Guggi T, Mannion AF. The use of the Core Outcome Measures Index (COMI) in patients undergoing total knee replacement. Knee. 2017;24(2):372–9.CrossRef Impellizzeri FM, Leunig M, Preiss S, Guggi T, Mannion AF. The use of the Core Outcome Measures Index (COMI) in patients undergoing total knee replacement. Knee. 2017;24(2):372–9.CrossRef
9.
go back to reference Niemeyer P, Pestka JM, Kreuz PC, Salzmann GM, Kostler W, Sudkamp NP, et al. Standardized cartilage biopsies from the intercondylar notch for autologous chondrocyte implantation (ACI). Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2010;18(8):1122–7.CrossRef Niemeyer P, Pestka JM, Kreuz PC, Salzmann GM, Kostler W, Sudkamp NP, et al. Standardized cartilage biopsies from the intercondylar notch for autologous chondrocyte implantation (ACI). Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2010;18(8):1122–7.CrossRef
10.
go back to reference Niemeyer P, Salzmann G, Feucht M, Pestka J, Porichis S, Ogon P, et al. First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: a matched-pair analysis on long-term clinical outcome. Int Orthop. 2014;38(10):2065–70.CrossRef Niemeyer P, Salzmann G, Feucht M, Pestka J, Porichis S, Ogon P, et al. First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: a matched-pair analysis on long-term clinical outcome. Int Orthop. 2014;38(10):2065–70.CrossRef
11.
go back to reference Pestka JM, Schmal H, Salzmann G, Hecky J, Sudkamp NP, Niemeyer P. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics. Arch Orthop Trauma Surg. 2011;131(6):779–89.CrossRef Pestka JM, Schmal H, Salzmann G, Hecky J, Sudkamp NP, Niemeyer P. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics. Arch Orthop Trauma Surg. 2011;131(6):779–89.CrossRef
12.
go back to reference Jones DG, Peterson L. Autologous chondrocyte implantation. The Journal of bone and joint surgery American volume. 2006;88(11):2502–20.CrossRef Jones DG, Peterson L. Autologous chondrocyte implantation. The Journal of bone and joint surgery American volume. 2006;88(11):2502–20.CrossRef
13.
go back to reference Larsson AC, Petersson I, Ekdahl C. Functional capacity and early radiographic osteoarthritis in middle-aged people with chronic knee pain. Physiotherapy research international : the journal for researchers and clinicians in physical therapy. 1998;3(3):153–63.CrossRef Larsson AC, Petersson I, Ekdahl C. Functional capacity and early radiographic osteoarthritis in middle-aged people with chronic knee pain. Physiotherapy research international : the journal for researchers and clinicians in physical therapy. 1998;3(3):153–63.CrossRef
14.
go back to reference Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord. 2008;9:116.CrossRef Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord. 2008;9:116.CrossRef
15.
go back to reference Hernandez-Vaquero D, Fernandez-Carreira JM. Relationship between radiological grading and clinical status in knee osteoarthritis. A multicentric study. BMC Musculoskelet Disord. 2012;13:194.CrossRef Hernandez-Vaquero D, Fernandez-Carreira JM. Relationship between radiological grading and clinical status in knee osteoarthritis. A multicentric study. BMC Musculoskelet Disord. 2012;13:194.CrossRef
16.
go back to reference Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23.CrossRef Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23.CrossRef
17.
go back to reference de Windt TS, Bekkers JE, Creemers LB, Dhert WJ, Saris DB. Patient profiling in cartilage regeneration: prognostic factors determining success of treatment for cartilage defects. Am J Sports Med. 2009;37(Suppl 1):58S–62S.CrossRef de Windt TS, Bekkers JE, Creemers LB, Dhert WJ, Saris DB. Patient profiling in cartilage regeneration: prognostic factors determining success of treatment for cartilage defects. Am J Sports Med. 2009;37(Suppl 1):58S–62S.CrossRef
18.
go back to reference Jaiswal PK, Bentley G, Carrington RW, Skinner JA, Briggs TW. The adverse effect of elevated body mass index on outcome after autologous chondrocyte implantation. The Journal of bone and joint surgery British volume. 2012;94(10):1377–81.CrossRef Jaiswal PK, Bentley G, Carrington RW, Skinner JA, Briggs TW. The adverse effect of elevated body mass index on outcome after autologous chondrocyte implantation. The Journal of bone and joint surgery British volume. 2012;94(10):1377–81.CrossRef
19.
go back to reference Niemeyer P, Salzmann GM, Hirschmuller A, Sudkamp NP. Factors that influence clinical outcome following autologous chondrocyte implantation for cartilage defects of the knee. Z Orthop Unfall. 2012;150(1):83–8.CrossRef Niemeyer P, Salzmann GM, Hirschmuller A, Sudkamp NP. Factors that influence clinical outcome following autologous chondrocyte implantation for cartilage defects of the knee. Z Orthop Unfall. 2012;150(1):83–8.CrossRef
20.
go back to reference Ebert JR, Smith A, Fallon M, Wood DJ, Ackland TR. Correlation between clinical and radiological outcomes after matrix-induced autologous chondrocyte implantation in the femoral condyles. Am J Sports Med. 2014;42(8):1857–64.CrossRef Ebert JR, Smith A, Fallon M, Wood DJ, Ackland TR. Correlation between clinical and radiological outcomes after matrix-induced autologous chondrocyte implantation in the femoral condyles. Am J Sports Med. 2014;42(8):1857–64.CrossRef
21.
go back to reference Salzmann GM, Erdle B, Porichis S, Uhl M, Ghanem N, Schmal H, et al. Long-term T2 and qualitative MRI morphology after first-generation knee autologous chondrocyte implantation: cartilage ultrastructure is not correlated to clinical or qualitative MRI outcome. Am J Sports Med. 2014;42(8):1832–40.CrossRef Salzmann GM, Erdle B, Porichis S, Uhl M, Ghanem N, Schmal H, et al. Long-term T2 and qualitative MRI morphology after first-generation knee autologous chondrocyte implantation: cartilage ultrastructure is not correlated to clinical or qualitative MRI outcome. Am J Sports Med. 2014;42(8):1832–40.CrossRef
22.
go back to reference Perdisa F, Kon E, Sessa A, Andriolo L, Busacca M, Marcacci M, et al. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging findings at midterm follow-up. Am J Sports Med. 2018;46(2):314–21.CrossRef Perdisa F, Kon E, Sessa A, Andriolo L, Busacca M, Marcacci M, et al. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging findings at midterm follow-up. Am J Sports Med. 2018;46(2):314–21.CrossRef
23.
go back to reference Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng MH, et al. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2014;22(10):2522–30.CrossRef Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng MH, et al. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2014;22(10):2522–30.CrossRef
Metadata
Title
Correlation between the AMADEUS score and preoperative clinical patient-reported outcome measurements (PROMs) in patients undergoing matrix-induced autologous chondrocyte implantation (MACI)
Authors
Armin Runer
Pia Jungmann
Götz Welsch
Danica Kümmel
Franco Impellizzieri
Stefan Preiss
Gian Salzmann
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1107-z

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue