Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 4/2018

Open Access 01-04-2018 | Cornea

Correlation between central stromal demarcation line depth and changes in K values after corneal cross-linking (CXL)

Authors: Niklas Pircher, Jan Lammer, Stephan Holzer, Andreas Gschließer, Ruth Donner, Stefan Pieh, Gerald Schmidinger

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 4/2018

Login to get access

Abstract

Purpose

A stromal demarcation line (DL) after corneal cross-linking (CXL) has lately been suggested as a surrogate parameter for the success of CXL. The aim of this study was to investigate the correlation between depth of the central DL 1 month and the change in K values 12 months after CXL.

Methods

Treatment-naive subjects with keratoconus were treated using an accelerated CXL protocol [A-CXL(9*10)]. Depth of the DL/relative depth of the DL (DL%) was measured using Visante OCT imaging 1 month postoperatively (OP). Kmax/K2.5 (preOP) and change in Kmax/K2.5 (preOP − 12 months postOP) were assessed using corneal tomography (Pentacam HR, Oculus GmBH).

Results

Forty eyes were treated following the A-CXL(9*10). The mean DL depth was 200 ± 99 μm (range 71 to 479)/mean DL% = 42.70 ± 20.00% (range 17–90). There was no statistically significant correlation between stromal depth of the DL and change in Kmax or K2.5, respectively (Spearman rho DL/∆Kmax − 0.14 and DL/∆K2.5 − 0.14). Between DL% and the changes in maximum K values or K2.5, no statistically significant correlation was found as well (Spearman rho DL%/∆Kmax − 0.10 and DL%/∆K2.5 − 0.19). Mean change in Kmax after 12 months was − 0.68 ± 2.26 diopters (D) (median − 0.35 D) and − 0.82 ± 1.6 D (median − 0.65 D) for K2.5 (p = 0.07; p = 0.02).

Conclusions

No statistically significant correlation was found between the stromal central depth of the DL and any outcome parameter for CXL after 12 months. Therefore, the interpretation of the DL as a predictive parameter for the effect of the procedure may not apply.
Literature
1.
go back to reference Renesto AC, Moscovici BK, Soong HK et al (2015) Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography. Cornea 34:199–203CrossRefPubMed Renesto AC, Moscovici BK, Soong HK et al (2015) Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography. Cornea 34:199–203CrossRefPubMed
2.
go back to reference Seiler T, Hafezi F (2006) Corneal cross-linking-induced stromal demarcation line. Cornea 25:1057–1059CrossRefPubMed Seiler T, Hafezi F (2006) Corneal cross-linking-induced stromal demarcation line. Cornea 25:1057–1059CrossRefPubMed
3.
go back to reference Mazzotta C, Balestrazzi A, Traversi C et al (2007) Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea 26:390–397CrossRefPubMed Mazzotta C, Balestrazzi A, Traversi C et al (2007) Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea 26:390–397CrossRefPubMed
4.
go back to reference Doors M, Tahzib NG, Eggink F et al (2009) Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. Am J Ophthalmol 148:844–851CrossRefPubMed Doors M, Tahzib NG, Eggink F et al (2009) Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. Am J Ophthalmol 148:844–851CrossRefPubMed
5.
go back to reference Kymionis GD, Tsoulnaras KI, Grentzelos M et al (2014) Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J Cataract Refract Surg 40:736–740CrossRefPubMed Kymionis GD, Tsoulnaras KI, Grentzelos M et al (2014) Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J Cataract Refract Surg 40:736–740CrossRefPubMed
6.
go back to reference Brittingham S, Tappeiner C, Frueh BE (2014) Corneal cross-linking with the standard and rapid protocol: difference in the demarcation line and 12-month outcomes. Invest Ophthalmol Vis Sci 17:0–2 Brittingham S, Tappeiner C, Frueh BE (2014) Corneal cross-linking with the standard and rapid protocol: difference in the demarcation line and 12-month outcomes. Invest Ophthalmol Vis Sci 17:0–2
7.
go back to reference Shetty R, Pahuja NK, Nuijts RMMA et al (2015) Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol 160:243–249CrossRefPubMed Shetty R, Pahuja NK, Nuijts RMMA et al (2015) Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol 160:243–249CrossRefPubMed
8.
go back to reference Ng ALK, Chan TC, Cheng AC (2016) Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clin Exp Ophthalmol 44:8–14CrossRefPubMed Ng ALK, Chan TC, Cheng AC (2016) Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. Clin Exp Ophthalmol 44:8–14CrossRefPubMed
9.
go back to reference Schumacher S, Oeftiger L, Mrochen M (2011) Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 52:9048–9052CrossRefPubMed Schumacher S, Oeftiger L, Mrochen M (2011) Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 52:9048–9052CrossRefPubMed
10.
go back to reference Mita M, Waring GO IV, Tomita M (2014) High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg 40:1032–1040CrossRefPubMed Mita M, Waring GO IV, Tomita M (2014) High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg 40:1032–1040CrossRefPubMed
11.
go back to reference Pircher N, Pachala M, Prager F et al (2015) Changes in straylight and densitometry values after corneal collagen crosslinking. J Cataract Refract Surg 41:1038–1043CrossRefPubMed Pircher N, Pachala M, Prager F et al (2015) Changes in straylight and densitometry values after corneal collagen crosslinking. J Cataract Refract Surg 41:1038–1043CrossRefPubMed
12.
go back to reference Koller T, Schumacher S, Fankhauser F, Seiler T (2013) Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea 32:165–168CrossRefPubMed Koller T, Schumacher S, Fankhauser F, Seiler T (2013) Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea 32:165–168CrossRefPubMed
13.
go back to reference Hammer A, Richoz O, Arba Mosquera S et al (2014) Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci 55:2881–2884CrossRefPubMed Hammer A, Richoz O, Arba Mosquera S et al (2014) Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci 55:2881–2884CrossRefPubMed
14.
go back to reference Mazzotta C, Baiocchi S, Caporossi T et al (2013) Riboflavin 0.1% (VibeX) for the treatment of keratoconus. Expert Op Orphan Drugs 1:235–240CrossRef Mazzotta C, Baiocchi S, Caporossi T et al (2013) Riboflavin 0.1% (VibeX) for the treatment of keratoconus. Expert Op Orphan Drugs 1:235–240CrossRef
15.
go back to reference Ehmke T, Seiler TG, Fischinger I et al (2016) Comparison of corneal riboflavin gradients using dextran and HPMC solutions. J Refract Surg 32:798–802CrossRefPubMed Ehmke T, Seiler TG, Fischinger I et al (2016) Comparison of corneal riboflavin gradients using dextran and HPMC solutions. J Refract Surg 32:798–802CrossRefPubMed
16.
go back to reference Holopainen JM, Krootila K (2011) Transient corneal thinning in eyes undergoing corneal cross-linking. Am J Ophthalmol 152:533–536CrossRefPubMed Holopainen JM, Krootila K (2011) Transient corneal thinning in eyes undergoing corneal cross-linking. Am J Ophthalmol 152:533–536CrossRefPubMed
17.
go back to reference Rechichi M, Mazzotta C, Daya S et al (2016) Intraoperative OCT pachymetry in patients undergoing dextran-free riboflavin UVA accelerated corneal collagen crosslinking. Curr Eye Res 41:1310–1315CrossRefPubMed Rechichi M, Mazzotta C, Daya S et al (2016) Intraoperative OCT pachymetry in patients undergoing dextran-free riboflavin UVA accelerated corneal collagen crosslinking. Curr Eye Res 41:1310–1315CrossRefPubMed
18.
go back to reference Schmidinger G, Pachala M, Prager F (2013) Pachymetry changes during corneal crosslinking: effect of closed eyelids and hypotonic riboflavin solution. J Cataract Refract Surg 39:1179–1183CrossRefPubMed Schmidinger G, Pachala M, Prager F (2013) Pachymetry changes during corneal crosslinking: effect of closed eyelids and hypotonic riboflavin solution. J Cataract Refract Surg 39:1179–1183CrossRefPubMed
19.
go back to reference Richoz O, Hammer A, Tabibian D et al (2013) The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol 2:6CrossRefPubMedPubMedCentral Richoz O, Hammer A, Tabibian D et al (2013) The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol 2:6CrossRefPubMedPubMedCentral
Metadata
Title
Correlation between central stromal demarcation line depth and changes in K values after corneal cross-linking (CXL)
Authors
Niklas Pircher
Jan Lammer
Stephan Holzer
Andreas Gschließer
Ruth Donner
Stefan Pieh
Gerald Schmidinger
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 4/2018
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-018-3922-z

Other articles of this Issue 4/2018

Graefe's Archive for Clinical and Experimental Ophthalmology 4/2018 Go to the issue