Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

01-12-2021 | Coronavirus | Research article

Allergen fragrance molecules: a potential relief for COVID-19

Authors: Aslı Deniz Aydın, Faruk Altınel, Hüseyin Erdoğmuş, Çağdaş Devrim Son

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

The latest coronavirus SARS-CoV-2, discovered in China and rapidly spread Worldwide. COVID-19 affected millions of people and killed hundreds of thousands worldwide. There are many ongoing studies investigating drug(s) suitable for preventing and/or treating this pandemic; however, there are no specific drugs or vaccines available to treat or prevent SARS-CoV-2 as of today.

Methods

Fifty-eight fragrance materials, which are classified as allergen fragrance molecules, were selected and used in this study. Docking simulations were carried out using four functional proteins; the Covid19 Main Protase (MPro), Receptor binding domain (RBD) of spike protein, Nucleocapsid, and host Bromodomain protein (BRD2), as target macromolecules. Three different software, AutoDock, AutoDock Vina (Vina), and Molegro Virtual Docker (MVD), running a total of four different docking protocol with optimized energy functions were used. Results were compared with the five molecules reported in the literature as potential drugs against COVID-19. Virtual screening was carried out using Vina, molecules satisfying our cut-off (− 6.5 kcal/mol) binding affinity was confirmed by MVD. Selected molecules were analyzed using the flexible docking protocol of Vina and AutoDock default settings.

Results

Ten out of 58 allergen fragrance molecules were selected for further docking studies. MPro and BRD2 are potential targets for the tested allergen fragrance molecules, while RBD and Nucleocapsid showed weak binding energies. According to AutoDock results, three molecules, Benzyl Cinnamate, Dihydroambrettolide, and Galaxolide, had good binding affinities to BRD2. While Dihydroambrettolide and Galaxolide showed the potential to bind to MPro, Sclareol and Vertofix had the best calculated binding affinities to this target. When the flexible docking results analyzed, all the molecules tested had better calculated binding affinities as expected. Benzyl Benzoate and Benzyl Salicylate showed good binding affinities to BRD2. In the case of MPro, Sclareol had the lowest binding affinity among all the tested allergen fragrance molecules.

Conclusion

Allergen fragrance molecules are readily available, cost-efficient, and shown to be safe for human use. Results showed that several of these molecules had comparable binding affinities as the potential drug molecules reported in the literature to target proteins. Thus, these allergen molecules at correct doses could have significant health benefits.
Appendix
Available only for authorised users
Literature
3.
go back to reference Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020;46(2):315–28.CrossRefPubMedPubMedCentral Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020;46(2):315–28.CrossRefPubMedPubMedCentral
4.
go back to reference Lim J, Jeon S, Shin H-Y, Kim M-J, Seong Y-M, Lee W-J, Choe K-W, Kang Y-M, Lee B, Park S-J. Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci. 2020;35(6):e79. https://doi.org/10.3346/jkms.2020.35.e79. Lim J, Jeon S, Shin H-Y, Kim M-J, Seong Y-M, Lee W-J, Choe K-W, Kang Y-M, Lee B, Park S-J. Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci. 2020;35(6):e79. https://​doi.​org/​10.​3346/​jkms.​2020.​35.​e79
5.
go back to reference Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anesth J Can D Anesthesie. 2020;67(5):568–76.CrossRef Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anesth J Can D Anesthesie. 2020;67(5):568–76.CrossRef
7.
go back to reference Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.CrossRefPubMedPubMedCentral Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.CrossRefPubMedPubMedCentral
8.
go back to reference Bo Ram Beck BS, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model | Elsevier Enhanced Reader. Comput Struct Biotechnol J. 2020;16:6. Bo Ram Beck BS, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model | Elsevier Enhanced Reader. Comput Struct Biotechnol J. 2020;16:6.
9.
go back to reference Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69–71.CrossRefPubMed Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69–71.CrossRefPubMed
10.
go back to reference Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, Zhu W: Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. In.: bioRxiv; 2020. Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, Zhu W: Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. In.: bioRxiv; 2020.
11.
go back to reference Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020;14(1):64–8.CrossRefPubMed Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020;14(1):64–8.CrossRefPubMed
12.
go back to reference de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2020;117(12):6771–6.CrossRefPubMedPubMedCentral de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2020;117(12):6771–6.CrossRefPubMedPubMedCentral
14.
go back to reference Arctander S. Perfume and flavor chemicals (aroma chemicals), vol. 2. Newark: Allured Publishing; 1994. Arctander S. Perfume and flavor chemicals (aroma chemicals), vol. 2. Newark: Allured Publishing; 1994.
15.
go back to reference Muller PM, Lamparsky D. Perfumes-art, science and technology. Elsevier Applied Science: Zürich; 1991. Muller PM, Lamparsky D. Perfumes-art, science and technology. Elsevier Applied Science: Zürich; 1991.
16.
go back to reference Berger RG, Pickenhagen W, Kraft P. Scent and chemistry. The molecular world of odors. Verlag Helvetica Chimica Acta: Zurich; 2012. Berger RG, Pickenhagen W, Kraft P. Scent and chemistry. The molecular world of odors. Verlag Helvetica Chimica Acta: Zurich; 2012.
17.
go back to reference Cerbelaud R. Formulaire De Parfumerie Tome I. Paris: Editions Opera; 1951. Cerbelaud R. Formulaire De Parfumerie Tome I. Paris: Editions Opera; 1951.
19.
go back to reference Arctander S. Perfume and flavor materials of natural origin, vol. 2. New Jersey: Allured Publishing; 1994. Arctander S. Perfume and flavor materials of natural origin, vol. 2. New Jersey: Allured Publishing; 1994.
20.
go back to reference Guenther E. The essential oils, Vol. 6: individual essential oils. Malabar: Krieger Pub Co.; 1972. Guenther E. The essential oils, Vol. 6: individual essential oils. Malabar: Krieger Pub Co.; 1972.
21.
go back to reference Patne T, Mahore J, Tokmurke P. Inhalation of essential oils: could be adjuvant therapeutic strategy for COVID-19. Int J Pharm Sci Res. 2020;11(9):4095–103. Patne T, Mahore J, Tokmurke P. Inhalation of essential oils: could be adjuvant therapeutic strategy for COVID-19. Int J Pharm Sci Res. 2020;11(9):4095–103.
22.
go back to reference Loizzo MR, Saab AM, Tundis R, Statti GA, Menichini F, Lampronti I, Gambari R, Cinatl J, Doerr HW. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. 2008;5(3):461–70.CrossRefPubMedPubMedCentral Loizzo MR, Saab AM, Tundis R, Statti GA, Menichini F, Lampronti I, Gambari R, Cinatl J, Doerr HW. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. 2008;5(3):461–70.CrossRefPubMedPubMedCentral
23.
go back to reference Mohanty S, Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of artificial intelligence in COVID-19 drug repurposing. Diab Metab Syndrome-Clin Res Rev. 2020;14(5):1027–31. Mohanty S, Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of artificial intelligence in COVID-19 drug repurposing. Diab Metab Syndrome-Clin Res Rev. 2020;14(5):1027–31.
26.
go back to reference Ferraz WR, Gomes RA, Novaes ALS, Trossini GHG. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: anin silicorepurposing study. Future Med Chem. 2020;12(20):1815–28.CrossRefPubMed Ferraz WR, Gomes RA, Novaes ALS, Trossini GHG. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: anin silicorepurposing study. Future Med Chem. 2020;12(20):1815–28.CrossRefPubMed
27.
go back to reference PDB ID:6W63 Mesecar, A-D. A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). Center for Structural Genomics of Infectious Diseases (CSGID). 2020. PDB ID:6W63 Mesecar, A-D. A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). Center for Structural Genomics of Infectious Diseases (CSGID). 2020.
28.
go back to reference PDB ID:6VW1 Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4. PDB ID:6VW1 Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.
29.
go back to reference Kannan S, Ali PSS, Sheeza A, Hemalatha K. COVID-19 (novel coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci. 2020;24(4):2006–11.PubMed Kannan S, Ali PSS, Sheeza A, Hemalatha K. COVID-19 (novel coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci. 2020;24(4):2006–11.PubMed
30.
go back to reference PDB ID:6VYO Chang, C, Michalska, K, Jedrzejczak, R, Maltseva, N, Endres, M, Godzik, A, Kim, Y, Joachimiak, A. Crystal structure of RNA binding domain of nucleocapsid phosphoprotein from SARS coronavirus 2. Center for Structural Genomics of Infectious Diseases (CSGID). 2020. PDB ID:6VYO Chang, C, Michalska, K, Jedrzejczak, R, Maltseva, N, Endres, M, Godzik, A, Kim, Y, Joachimiak, A. Crystal structure of RNA binding domain of nucleocapsid phosphoprotein from SARS coronavirus 2. Center for Structural Genomics of Infectious Diseases (CSGID). 2020.
31.
go back to reference Khupse R, Dixit P: Potential antiviral mechanism of Hydroxychloroquine in COVID-19 and further extrapolation to Celecoxib (Celebrex) for future clinical trials. Authorea 2020. Khupse R, Dixit P: Potential antiviral mechanism of Hydroxychloroquine in COVID-19 and further extrapolation to Celecoxib (Celebrex) for future clinical trials. Authorea 2020.
32.
go back to reference PDB ID: 5UEW Wang L, Pratt J-K, Soltwedel T, Sheppard G-S, Fidanze S-D, Liu D, Hasvold L-A, Mantei R-A, Holms J-H, McClellan W-J, Wendt M-D, Wada C, Frey R, Hansen T-M, Hubbard R, Park C-H, Li L, Magoc T-J, Albert D-H, Lin X, Warder S-E, Kovar P, Huang X, Wilcox D, Wang R, Rajaraman G, Petros A-M, Hutchins C-W, Panchal S-C, Sun C, Elmore S-W, Shen Y, Kati W-M, McDaniel K-F. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors. J Med Chem. 2017;60(9):3828–50. PDB ID: 5UEW Wang L, Pratt J-K, Soltwedel T, Sheppard G-S, Fidanze S-D, Liu D, Hasvold L-A, Mantei R-A, Holms J-H, McClellan W-J, Wendt M-D, Wada C, Frey R, Hansen T-M, Hubbard R, Park C-H, Li L, Magoc T-J, Albert D-H, Lin X, Warder S-E, Kovar P, Huang X, Wilcox D, Wang R, Rajaraman G, Petros A-M, Hutchins C-W, Panchal S-C, Sun C, Elmore S-W, Shen Y, Kati W-M, McDaniel K-F. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family Bromodomain Inhibitors. J Med Chem. 2017;60(9):3828–50. 
33.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker B-A, Thiessen P-A, Yu B, Zaslavsky L, Zhang J, Bolton E-E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2019;47(D1):D1388-D1395. https://www.ncbi.nlm.nih.gov/pubmed/. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker B-A, Thiessen P-A, Yu B, Zaslavsky L, Zhang J, Bolton E-E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2019;47(D1):D1388-D1395. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​
34.
go back to reference Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.CrossRefPubMed Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.CrossRefPubMed
35.
go back to reference Berman H-M, Westbrook J, Feng Z, Gilliland G, Bhat T-N, Weissig H, Shindyalov I-N, Bourne P-E. The Protein Data Bank. Nucleic Acids Research. 2000;28:235–42. http://www.rcsb.org/. Berman H-M, Westbrook J, Feng Z, Gilliland G, Bhat T-N, Weissig H, Shindyalov I-N, Bourne P-E. The Protein Data Bank. Nucleic Acids Research. 2000;28:235–42. http://​www.​rcsb.​org/​.
36.
go back to reference Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Iype L, Jain S, Fagan P, Marvin J, et al. The Protein Data Bank. Acta Crystallograph Sect D-Struct Biol. 2002;58:899–907.CrossRef Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Iype L, Jain S, Fagan P, Marvin J, et al. The Protein Data Bank. Acta Crystallograph Sect D-Struct Biol. 2002;58:899–907.CrossRef
37.
go back to reference Trott O, Olson AJ. Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.PubMedPubMedCentral Trott O, Olson AJ. Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.PubMedPubMedCentral
39.
go back to reference Wallace AC, Laskowski RA, Thornton JM. Ligplot - a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 1995;8(2):127–34.CrossRefPubMed Wallace AC, Laskowski RA, Thornton JM. Ligplot - a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 1995;8(2):127–34.CrossRefPubMed
40.
go back to reference Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6(1):1–8.CrossRef Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6(1):1–8.CrossRef
41.
go back to reference Martindale W. The extra pharmacopoeia. London: Royal Pharmaceutical Society; 1996. Martindale W. The extra pharmacopoeia. London: Royal Pharmaceutical Society; 1996.
42.
go back to reference LisBalchin M, Deans SG. Bioactivity of selected plant essential oils against listeria monocytogenes. J Appl Microbiol. 1997;82(6):759–62.CrossRef LisBalchin M, Deans SG. Bioactivity of selected plant essential oils against listeria monocytogenes. J Appl Microbiol. 1997;82(6):759–62.CrossRef
43.
go back to reference Burt S. Essential oils: their antibacterial properties and potential applications in foods - a review. Int J Food Microbiol. 2004;94(3):223–53.CrossRefPubMed Burt S. Essential oils: their antibacterial properties and potential applications in foods - a review. Int J Food Microbiol. 2004;94(3):223–53.CrossRefPubMed
44.
go back to reference Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A-dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem. 2005;53(24):9452–8.CrossRefPubMed Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A-dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem. 2005;53(24):9452–8.CrossRefPubMed
45.
go back to reference Sylvestre M, Pichette A, Longtin A, Nagau F, Legault J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J Ethnopharmacol. 2006;103(1):99–102.CrossRefPubMed Sylvestre M, Pichette A, Longtin A, Nagau F, Legault J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J Ethnopharmacol. 2006;103(1):99–102.CrossRefPubMed
46.
go back to reference Faid M, Bakhy K, Anchad M, Tantaouielaraki A. Almond paste-physicochemical and microbiological characterization and preservation with Sorbic acid and cinnamon. J Food Prot. 1995;58(5):547–50.CrossRefPubMed Faid M, Bakhy K, Anchad M, Tantaouielaraki A. Almond paste-physicochemical and microbiological characterization and preservation with Sorbic acid and cinnamon. J Food Prot. 1995;58(5):547–50.CrossRefPubMed
Metadata
Title
Allergen fragrance molecules: a potential relief for COVID-19
Authors
Aslı Deniz Aydın
Faruk Altınel
Hüseyin Erdoğmuş
Çağdaş Devrim Son
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03214-4

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue