Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Research

Copy number variations in candidate genomic regions confirm genetic heterogeneity and parental bias in Hirschsprung disease

Authors: Francesca Lantieri, Stefania Gimelli, Chiara Viaggi, Elissavet Stathaki, Michela Malacarne, Giuseppe Santamaria, Alice Grossi, Manuela Mosconi, Frédérique Sloan-Béna, Alessio Pini Prato, Domenico Coviello, Isabella Ceccherini

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Hirschsprung Disease (HSCR) is a congenital defect of the intestinal innervations characterized by complex inheritance. Many susceptibility genes including RET, the major HSCR gene, and several linked regions and associated loci have been shown to contribute to disease pathogenesis. Nonetheless, a proportion of patients still remains unexplained. Copy Number Variations (CNVs) have already been involved in HSCR, and for this reason we performed Comparative Genomic Hybridization (CGH), using a custom array with high density probes.

Results

A total of 20 HSCR candidate regions/genes was tested in 55 sporadic patients and four patients with already known chromosomal aberrations. Among 83 calls, 12 variants were experimentally validated, three of which involving the HSCR crucial genes SEMA3A/3D, NRG1, and PHOX2B. Conversely RET involvement in HSCR does not seem to rely on the presence of CNVs while, interestingly, several gains and losses did co-occur with another RET defect, thus confirming that more than one predisposing event is necessary for HSCR to develop. New loci were also shown to be involved, such as ALDH1A2, already found to play a major role in the enteric nervous system. Finally, all the inherited CNVs were of maternal origin.

Conclusions

Our results confirm a wide genetic heterogeneity in HSCR occurrence and support a role of candidate genes in expression regulation and cell signaling, thus contributing to depict further the molecular complexity of the genomic regions involved in the Enteric Nervous System development. The observed maternal transmission bias for HSCR associated CNVs supports the hypothesis that in females these variants might be more tolerated, requiring additional alterations to develop HSCR disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1–14.PubMedCrossRef Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1–14.PubMedCrossRef
2.
go back to reference Gui H, Schriemer D, Cheng WW, Chauhan RK, Antiňolo G, Berrios C, et al. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 2017;18:48.PubMedPubMedCentralCrossRef Gui H, Schriemer D, Cheng WW, Chauhan RK, Antiňolo G, Berrios C, et al. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 2017;18:48.PubMedPubMedCentralCrossRef
3.
go back to reference Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D, et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A. 2000;97:268–73.PubMedPubMedCentralCrossRef Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D, et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A. 2000;97:268–73.PubMedPubMedCentralCrossRef
4.
go back to reference Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet. 2002;31:89–93.PubMedCrossRef Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet. 2002;31:89–93.PubMedCrossRef
5.
go back to reference Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature. 2005;434:857–63.PubMedCrossRef Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature. 2005;434:857–63.PubMedCrossRef
6.
go back to reference Lantieri F, Griseri P, Puppo F, Campus R, Martucciello G, Ravazzolo R, et al. Haplotypes of the human RET proto-oncogene associated with Hirschsprung disease in the Italian population derive from a single ancestral combination of alleles. Ann Hum Genet. 2006;70:12–26.PubMedCrossRef Lantieri F, Griseri P, Puppo F, Campus R, Martucciello G, Ravazzolo R, et al. Haplotypes of the human RET proto-oncogene associated with Hirschsprung disease in the Italian population derive from a single ancestral combination of alleles. Ann Hum Genet. 2006;70:12–26.PubMedCrossRef
7.
go back to reference Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J, Burzynski G, et al. Differential contributions of rare and common, coding and noncoding ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet. 2010;87:60–74.PubMedPubMedCentralCrossRef Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J, Burzynski G, et al. Differential contributions of rare and common, coding and noncoding ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet. 2010;87:60–74.PubMedPubMedCentralCrossRef
8.
go back to reference Chatterjee S, Kapoor A, Akiyama JA, Auer DR, Lee D, Gabriel S, et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. Cell. 2016;167:355–68.PubMedPubMedCentralCrossRef Chatterjee S, Kapoor A, Akiyama JA, Auer DR, Lee D, Gabriel S, et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. Cell. 2016;167:355–68.PubMedPubMedCentralCrossRef
9.
go back to reference Garcia-Barcelo MM, Tang CS, Ngan ES, Lui VC, Chen Y, So MT, et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung's disease. Proc Natl Acad Sci U S A. 2009;106:2694–9.PubMedPubMedCentralCrossRef Garcia-Barcelo MM, Tang CS, Ngan ES, Lui VC, Chen Y, So MT, et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung's disease. Proc Natl Acad Sci U S A. 2009;106:2694–9.PubMedPubMedCentralCrossRef
10.
go back to reference Wang LL, Zhang Y, Fan Y, Li H, Zhou FH, Miao JN, et al. SEMA3A rs7804122 polymorphism is associated with Hirschsprung disease in the northeastern region of China. Birth Defects Res A Clin Mol Teratol. 2012;94:91–5.PubMedCrossRef Wang LL, Zhang Y, Fan Y, Li H, Zhou FH, Miao JN, et al. SEMA3A rs7804122 polymorphism is associated with Hirschsprung disease in the northeastern region of China. Birth Defects Res A Clin Mol Teratol. 2012;94:91–5.PubMedCrossRef
11.
go back to reference Jiang Q, Arnold S, Heanue T, Kilambi KP, Doan B, Kapoor A, et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet. 2015;96:581–96.PubMedPubMedCentralCrossRef Jiang Q, Arnold S, Heanue T, Kilambi KP, Doan B, Kapoor A, et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet. 2015;96:581–96.PubMedPubMedCentralCrossRef
12.
go back to reference Martucciello G, Bicocchi M, Dodero P, Lerone M, Cirillo MS, Puliti A, et al. Total colonic aganglionosis with interstitial deletion of the long arm of chromosome 10. Pediat Surg Int. 1992;7:308–10.CrossRef Martucciello G, Bicocchi M, Dodero P, Lerone M, Cirillo MS, Puliti A, et al. Total colonic aganglionosis with interstitial deletion of the long arm of chromosome 10. Pediat Surg Int. 1992;7:308–10.CrossRef
13.
go back to reference Fewtrell MS, Tam PK, Thomson AH, Fitchett M, Currie J, Huson SM, et al. Hirschsprung's disease associated with a deletion of chromosome 10 (q11.2q21.2): a further link with the neurocristopathies? J Med Genet. 1994;31:325–7.PubMedPubMedCentralCrossRef Fewtrell MS, Tam PK, Thomson AH, Fitchett M, Currie J, Huson SM, et al. Hirschsprung's disease associated with a deletion of chromosome 10 (q11.2q21.2): a further link with the neurocristopathies? J Med Genet. 1994;31:325–7.PubMedPubMedCentralCrossRef
14.
go back to reference Yin CL, Chen HI, Li LH, Chien YL, Liao HM, Chou MC, et al. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Mol Autism. 2016;7:23.PubMedPubMedCentralCrossRef Yin CL, Chen HI, Li LH, Chien YL, Liao HM, Chou MC, et al. Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Mol Autism. 2016;7:23.PubMedPubMedCentralCrossRef
15.
go back to reference Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry. 2017;22:430–40.PubMedCrossRef Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry. 2017;22:430–40.PubMedCrossRef
16.
go back to reference Jiang Q, Ho YY, Hao L, Nichols Berrios C, Chakravarti A. Copy number variants in candidate genes are genetic modifiers of Hirschsprung disease. PLoS One. 2011;6:e21219.PubMedPubMedCentralCrossRef Jiang Q, Ho YY, Hao L, Nichols Berrios C, Chakravarti A. Copy number variants in candidate genes are genetic modifiers of Hirschsprung disease. PLoS One. 2011;6:e21219.PubMedPubMedCentralCrossRef
17.
go back to reference Tang CS, Cheng G, So MT, Yip BH, Miao XP, Wong EH, et al. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet. 2012;8:e1002687.PubMedPubMedCentralCrossRef Tang CS, Cheng G, So MT, Yip BH, Miao XP, Wong EH, et al. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet. 2012;8:e1002687.PubMedPubMedCentralCrossRef
18.
go back to reference Bae JS, Koh I, Cheong HS, Seo JM, Kim DY, Oh JT, et al. A genome-wide association analysis of chromosomal aberrations and Hirschsprung disease. Transl Res. 2016;177:31–40.PubMedCrossRef Bae JS, Koh I, Cheong HS, Seo JM, Kim DY, Oh JT, et al. A genome-wide association analysis of chromosomal aberrations and Hirschsprung disease. Transl Res. 2016;177:31–40.PubMedCrossRef
19.
go back to reference Tilghman JM, Ling AY, Turner TN, Sosa MX, Krumm N, Chatterjee S, et al. Molecular genetic anatomy and risk profile of Hirschsprung's disease. N Engl J Med. 2019;380:1421–32.PubMedPubMedCentralCrossRef Tilghman JM, Ling AY, Turner TN, Sosa MX, Krumm N, Chatterjee S, et al. Molecular genetic anatomy and risk profile of Hirschsprung's disease. N Engl J Med. 2019;380:1421–32.PubMedPubMedCentralCrossRef
20.
go back to reference Benailly HK, Lapierre JM, Laudier B, Amiel J, Attié T, De Blois MC, et al. PMX2B, a new candidate gene for Hirschsprung's disease. Clin Genet. 2003;64:204–9.PubMedCrossRef Benailly HK, Lapierre JM, Laudier B, Amiel J, Attié T, De Blois MC, et al. PMX2B, a new candidate gene for Hirschsprung's disease. Clin Genet. 2003;64:204–9.PubMedCrossRef
21.
go back to reference Fernández RM, Mathieu Y, Luzón-Toro B, Núñez-Torres R, González-Meneses A, Antiñolo G, et al. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One. 2013;8:e54043.PubMedPubMedCentralCrossRef Fernández RM, Mathieu Y, Luzón-Toro B, Núñez-Torres R, González-Meneses A, Antiñolo G, et al. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One. 2013;8:e54043.PubMedPubMedCentralCrossRef
22.
go back to reference Kapoor A, Jiang Q, Chatterjee S, Chakraborty P, Sosa MX, Berrios C, et al. Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 susceptibility polymorphisms. Hum Mol Genet. 2015;24:2997–3003.PubMedPubMedCentralCrossRef Kapoor A, Jiang Q, Chatterjee S, Chakraborty P, Sosa MX, Berrios C, et al. Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 susceptibility polymorphisms. Hum Mol Genet. 2015;24:2997–3003.PubMedPubMedCentralCrossRef
23.
go back to reference Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet. 2002;32:237–44.PubMedCrossRef Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet. 2002;32:237–44.PubMedCrossRef
24.
go back to reference Leon TY, Ngan ES, Poon HC, So MT, Lui VC, Tam PK, et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J Pediatr Surg. 2009;44:1904–12.PubMedCrossRef Leon TY, Ngan ES, Poon HC, So MT, Lui VC, Tam PK, et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J Pediatr Surg. 2009;44:1904–12.PubMedCrossRef
25.
go back to reference Núñez-Torres R, Fernández RM, López-Alonso M, Antiñolo G, Borrego S. A novel study of copy number variations in Hirschsprung disease using the multiple ligation-dependent probe amplification (MLPA) technique. BMC Med Genet. 2009;10:119.PubMedPubMedCentralCrossRef Núñez-Torres R, Fernández RM, López-Alonso M, Antiñolo G, Borrego S. A novel study of copy number variations in Hirschsprung disease using the multiple ligation-dependent probe amplification (MLPA) technique. BMC Med Genet. 2009;10:119.PubMedPubMedCentralCrossRef
26.
go back to reference Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.PubMedCrossRef Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.PubMedCrossRef
27.
28.
go back to reference Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46(10):1063–71.PubMedPubMedCentralCrossRef Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46(10):1063–71.PubMedPubMedCentralCrossRef
29.
go back to reference Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838–46.PubMedPubMedCentralCrossRef Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838–46.PubMedPubMedCentralCrossRef
30.
go back to reference Lantieri F, Malacarne M, Gimelli S, Santamaria G, Coviello D, Ceccherini I. Custom Array comparative genomic hybridization: the importance of DNA quality, an expert eye, and variant validation. Int J Mol Sci. 2017;18:E609.PubMedCrossRef Lantieri F, Malacarne M, Gimelli S, Santamaria G, Coviello D, Ceccherini I. Custom Array comparative genomic hybridization: the importance of DNA quality, an expert eye, and variant validation. Int J Mol Sci. 2017;18:E609.PubMedCrossRef
31.
go back to reference Kerstjens-Frederikse WS, Hofstra RM, van Essen AJ, Meijers JH, Buys CH. A Hirschsprung disease locus at 22q11? J Med Genet. 1999;36:221–4.PubMed Kerstjens-Frederikse WS, Hofstra RM, van Essen AJ, Meijers JH, Buys CH. A Hirschsprung disease locus at 22q11? J Med Genet. 1999;36:221–4.PubMed
32.
go back to reference Serra A, Görgens H, Alhadad K, Ziegler A, Fitze G, Schackert HK. Analysis of RET, ZEB2, EDN3 and GDNF genomic rearrangements in 80 patients with Hirschsprung disease (using multiplex ligation-dependent probe amplification). Ann Hum Genet. 2009;73:147–51.PubMedCrossRef Serra A, Görgens H, Alhadad K, Ziegler A, Fitze G, Schackert HK. Analysis of RET, ZEB2, EDN3 and GDNF genomic rearrangements in 80 patients with Hirschsprung disease (using multiplex ligation-dependent probe amplification). Ann Hum Genet. 2009;73:147–51.PubMedCrossRef
33.
go back to reference Tang CS, Sribudiani Y, Miao XP, de Vries AR, Burzynski G, So MT, et al. Fine mapping of the 9q31 Hirschsprung's disease locus. Hum Genet. 2010;127:675–83.PubMedPubMedCentralCrossRef Tang CS, Sribudiani Y, Miao XP, de Vries AR, Burzynski G, So MT, et al. Fine mapping of the 9q31 Hirschsprung's disease locus. Hum Genet. 2010;127:675–83.PubMedPubMedCentralCrossRef
34.
go back to reference Lantieri F, Rydbeck H, Griseri P, Ceccherini I, Devoto M. Incorporating prior biological information in linkage studies increases power and limits multiple testing. BMC Proc. 2007;1(Suppl 1):S89.PubMedPubMedCentralCrossRef Lantieri F, Rydbeck H, Griseri P, Ceccherini I, Devoto M. Incorporating prior biological information in linkage studies increases power and limits multiple testing. BMC Proc. 2007;1(Suppl 1):S89.PubMedPubMedCentralCrossRef
35.
go back to reference Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol. 2005;6:789–800.PubMedCrossRef Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol. 2005;6:789–800.PubMedCrossRef
36.
go back to reference Heanue TA, Pachnis V. Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc Natl Acad Sci U S A. 2006;103:6919–24.PubMedPubMedCentralCrossRef Heanue TA, Pachnis V. Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc Natl Acad Sci U S A. 2006;103:6919–24.PubMedPubMedCentralCrossRef
37.
go back to reference Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D, et al. Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry. 2008;64:419–27.PubMedCrossRef Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D, et al. Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biol Psychiatry. 2008;64:419–27.PubMedCrossRef
38.
go back to reference Kim JH, Cheong HS, Sul JH, Seo JM, Kim DY, Oh JT, et al. A genome-wide association study identifies potential susceptibility loci for Hirschsprung disease. PLoS One. 2014;9:e110292.PubMedPubMedCentralCrossRef Kim JH, Cheong HS, Sul JH, Seo JM, Kim DY, Oh JT, et al. A genome-wide association study identifies potential susceptibility loci for Hirschsprung disease. PLoS One. 2014;9:e110292.PubMedPubMedCentralCrossRef
39.
go back to reference Tang CS, Ngan ES, Tang WK, So MT, Cheng G, Miao XP, et al. Mutations in the NRG1 gene are associated with Hirschsprung disease. Hum Genet. 2012;131:67–76.PubMedCrossRef Tang CS, Ngan ES, Tang WK, So MT, Cheng G, Miao XP, et al. Mutations in the NRG1 gene are associated with Hirschsprung disease. Hum Genet. 2012;131:67–76.PubMedCrossRef
40.
go back to reference Virtanen VB, Salo PP, Cao J, Löf-Granström A, Milani L, Metspalu A, et al. Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet. 2018;S1769–7212(18):30076–4. Virtanen VB, Salo PP, Cao J, Löf-Granström A, Milani L, Metspalu A, et al. Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet. 2018;S1769–7212(18):30076–4.
41.
go back to reference Tang W, Li B, Xu X, Zhou Z, Wu W, Tang J, et al. Aberrant high expression of NRG1 gene in Hirschsprung disease. J Pediatr Surg. 2012;47:1694–8.PubMedCrossRef Tang W, Li B, Xu X, Zhou Z, Wu W, Tang J, et al. Aberrant high expression of NRG1 gene in Hirschsprung disease. J Pediatr Surg. 2012;47:1694–8.PubMedCrossRef
42.
go back to reference Di Zanni E, Adamo A, Belligni E, Lerone M, Martucciello G, Mattioli G, et al. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta. 1863;2017:1770–7. Di Zanni E, Adamo A, Belligni E, Lerone M, Martucciello G, Mattioli G, et al. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta. 1863;2017:1770–7.
43.
go back to reference Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001;107:451–64.PubMedCrossRef Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001;107:451–64.PubMedCrossRef
44.
go back to reference Fu M, Sato Y, Lyons-Warren A, Zhang B, Kane MA, Napoli JL, et al. Vitamin a facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 2010;137:631–40.PubMedPubMedCentralCrossRef Fu M, Sato Y, Lyons-Warren A, Zhang B, Kane MA, Napoli JL, et al. Vitamin a facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 2010;137:631–40.PubMedPubMedCentralCrossRef
45.
go back to reference Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, et al. ADAM10 regulates notch function in intestinal stem cells of mice. Gastroenterology. 2014;147:822–34.PubMedCrossRef Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, et al. ADAM10 regulates notch function in intestinal stem cells of mice. Gastroenterology. 2014;147:822–34.PubMedCrossRef
46.
go back to reference Prasad RB, Lessmark A, Almgren P, Kovacs G, Hansson O, Oskolkov N, et al. Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia. 2016;59:1702–13.PubMedCrossRef Prasad RB, Lessmark A, Almgren P, Kovacs G, Hansson O, Oskolkov N, et al. Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia. 2016;59:1702–13.PubMedCrossRef
47.
go back to reference Itoh H, Berthet M, Fressart V, Denjoy I, Maugenre S, Klug D, et al. Asymmetry of parental origin in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction. Eur J Hum Genet. 2016;24:1160–6.PubMedCrossRef Itoh H, Berthet M, Fressart V, Denjoy I, Maugenre S, Klug D, et al. Asymmetry of parental origin in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction. Eur J Hum Genet. 2016;24:1160–6.PubMedCrossRef
48.
go back to reference Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BW, Schuurs-Hoeijmakers JH, Meader S, Hellebrekers CJ, et al. Clinical significance of de novo and inherited copy-number variation. Hum Mutat. 2013;34:1679–87.PubMedCrossRef Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BW, Schuurs-Hoeijmakers JH, Meader S, Hellebrekers CJ, et al. Clinical significance of de novo and inherited copy-number variation. Hum Mutat. 2013;34:1679–87.PubMedCrossRef
49.
go back to reference Wang B, Ji T, Zhou X, Wang J, Wang X, Wang J, et al. CNV analysis in Chinese children of mental retardation highlights a sex differentiation in parental contribution to de novo and inherited mutational burdens. Sci Rep. 2016;6:25954.PubMedPubMedCentralCrossRef Wang B, Ji T, Zhou X, Wang J, Wang X, Wang J, et al. CNV analysis in Chinese children of mental retardation highlights a sex differentiation in parental contribution to de novo and inherited mutational burdens. Sci Rep. 2016;6:25954.PubMedPubMedCentralCrossRef
50.
go back to reference Jannot AS, Amiel J, Pelet A, Lantieri F, Fernandez RM, Verheij JB, et al. Male and female differential reproductive rate could explain parental transmission asymmetry of mutation origin in Hirschsprung disease. Eur J Hum Genet. 2012;20:917–20.PubMedPubMedCentralCrossRef Jannot AS, Amiel J, Pelet A, Lantieri F, Fernandez RM, Verheij JB, et al. Male and female differential reproductive rate could explain parental transmission asymmetry of mutation origin in Hirschsprung disease. Eur J Hum Genet. 2012;20:917–20.PubMedPubMedCentralCrossRef
51.
go back to reference Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN, et al. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014;22:79–87.PubMedCrossRef Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN, et al. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014;22:79–87.PubMedCrossRef
52.
53.
go back to reference La Cognata V, Morello G, Gentile G, D'Agata V, Criscuolo C, Cavalcanti F, et al. A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease. Neurogenetics. 2016;17:233–44.PubMedPubMedCentralCrossRef La Cognata V, Morello G, Gentile G, D'Agata V, Criscuolo C, Cavalcanti F, et al. A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease. Neurogenetics. 2016;17:233–44.PubMedPubMedCentralCrossRef
54.
go back to reference Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T, et al. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci U S A. 2016;113:13432–7.PubMedPubMedCentralCrossRef Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T, et al. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci U S A. 2016;113:13432–7.PubMedPubMedCentralCrossRef
55.
go back to reference Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12.PubMedCrossRef Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12.PubMedCrossRef
Metadata
Title
Copy number variations in candidate genomic regions confirm genetic heterogeneity and parental bias in Hirschsprung disease
Authors
Francesca Lantieri
Stefania Gimelli
Chiara Viaggi
Elissavet Stathaki
Michela Malacarne
Giuseppe Santamaria
Alice Grossi
Manuela Mosconi
Frédérique Sloan-Béna
Alessio Pini Prato
Domenico Coviello
Isabella Ceccherini
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1205-3

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue