Skip to main content
Top
Published in: BMC Anesthesiology 1/2017

Open Access 01-12-2017 | Research article

Continuous Non-invasive finger cuff CareTaker® comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery

Authors: Irwin Gratz, Edward Deal, Francis Spitz, Martin Baruch, I. Elaine Allen, Julia E. Seaman, Erin Pukenas, Smith Jean

Published in: BMC Anesthesiology | Issue 1/2017

Login to get access

Abstract

Background

Despite increased interest in non-invasive arterial pressure monitoring, the majority of commercially available technologies have failed to satisfy the limits established for the validation of automatic arterial pressure monitoring by the Association for the Advancement of Medical Instrumentation (AAMI). According to the ANSI/AAMI/ISO 81060–2:2013 standards, the group-average accuracy and precision are defined as acceptable if bias is not greater than 5 mmHg and standard deviation is not greater than 8 mmHg. In this study, these standards are used to evaluate the CareTaker® (CT) device, a device measuring continuous non-invasive blood pressure via a pulse contour algorithm called Pulse Decomposition Analysis.

Methods

A convenience sample of 24 patients scheduled for major abdominal surgery were consented to participate in this IRB approved pilot study. Each patient was monitored with a radial arterial catheter and CT using a finger cuff applied to the contralateral thumb. Hemodynamic variables were measured and analyzed from both devices for the first thirty minutes of the surgical procedure including the induction of anesthesia. The mean arterial pressure (MAP), systolic and diastolic blood pressures continuously collected from the arterial catheter and CT were compared. Pearson correlation coefficients were calculated between arterial catheter and CT blood pressure measurements, a Bland-Altman analysis, and polar and 4Q plots were created.

Results

The correlation of systolic, diastolic, and mean arterial pressures were 0.92, 0.86, 0.91, respectively (p < 0.0001 for all the comparisons). The Bland-Altman comparison yielded a bias (as measured by overall mean difference) of −0.57, −2.52, 1.01 mmHg for systolic, diastolic, and mean arterial pressures, respectively with a standard deviation of 7.34, 6.47, 5.33 mmHg for systolic, diastolic, and mean arterial pressures, respectively (p < 0.001 for all comparisons). The polar plot indicates little bias between the two methods (90%/95% CI at 31.5°/52°, respectively, overall bias = 1.5°) with only a small percentage of points outside these lines. The 4Q plot indicates good concordance and no bias between the methods.

Conclusions

In this study, blood pressure measured using the non-invasive CT device was shown to correlate well with the arterial catheter measurements. Larger studies are needed to confirm these results in more varied settings. Most patients exhibited very good agreement between methods. Results were well within the limits established for the validation of automatic arterial pressure monitoring by the AAMI.
Literature
1.
go back to reference Kim SH, Lilot M, Sidhu KS, Rinehart J, Yu Z, Canales C, Cannesson M. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120(5):1080–97.CrossRefPubMed Kim SH, Lilot M, Sidhu KS, Rinehart J, Yu Z, Canales C, Cannesson M. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120(5):1080–97.CrossRefPubMed
2.
go back to reference Baruch MC, Warburton DE, Bredin SS, Cote A, Gerdt DW, Adkins CM. Pulse decomposition analysis of the digital arterial pulse during hemorrhage simulation. Nonlinear Biomed Phys. 2011;5(1):1.CrossRefPubMedPubMedCentral Baruch MC, Warburton DE, Bredin SS, Cote A, Gerdt DW, Adkins CM. Pulse decomposition analysis of the digital arterial pulse during hemorrhage simulation. Nonlinear Biomed Phys. 2011;5(1):1.CrossRefPubMedPubMedCentral
4.
go back to reference Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.CrossRefPubMed Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.CrossRefPubMed
5.
go back to reference Nichols WW, O’Rourke MF, McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London: Edward Arnold; 1999. Nichols WW, O’Rourke MF, McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London: Edward Arnold; 1999.
6.
go back to reference Epstein S, Willemet M, Chowienczyk PJ, Alastruey J. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. Am J Physiol Heart Circ Physiol. 2015;309(1):H222–34.CrossRefPubMedPubMedCentral Epstein S, Willemet M, Chowienczyk PJ, Alastruey J. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. Am J Physiol Heart Circ Physiol. 2015;309(1):H222–34.CrossRefPubMedPubMedCentral
7.
go back to reference Baruch MC, Kalantari K, Gerdt DW, Adkins CM. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. Biomed Eng Online. 2014;13:96.CrossRefPubMedPubMedCentral Baruch MC, Kalantari K, Gerdt DW, Adkins CM. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. Biomed Eng Online. 2014;13:96.CrossRefPubMedPubMedCentral
8.
go back to reference Callaghan FJ, et al. The relationship between arterial pulse-wave velocity and pulse frequency at different pressures. Med Biol Eng Comput. 1986;24(3):248–54.CrossRefPubMed Callaghan FJ, et al. The relationship between arterial pulse-wave velocity and pulse frequency at different pressures. Med Biol Eng Comput. 1986;24(3):248–54.CrossRefPubMed
9.
go back to reference Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, Immink RV, Jöbsis DA, Hollmann MW, Lahpor JR, de Mol BA, van Lieshout JJ. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology. 2012;116(5):1092–103.CrossRefPubMed Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, Immink RV, Jöbsis DA, Hollmann MW, Lahpor JR, de Mol BA, van Lieshout JJ. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology. 2012;116(5):1092–103.CrossRefPubMed
10.
11.
go back to reference Saugel B, Grothe O, Wagner JY. Tracking changes in cardiac output: statistical considerations on the 4-quadrant plot and the polar plot methodology. Anesth Analg. 2015;121(2):514–24.CrossRefPubMed Saugel B, Grothe O, Wagner JY. Tracking changes in cardiac output: statistical considerations on the 4-quadrant plot and the polar plot methodology. Anesth Analg. 2015;121(2):514–24.CrossRefPubMed
12.
go back to reference Critchley LA, Lee A, Ho AM-H. A Critical Review of the Ability of Continuous Cardiac Output Monitors to Measure Trends in Cardiac Output. Anesth Analg. 2010;111(5):1180–92. Critchley LA, Lee A, Ho AM-H. A Critical Review of the Ability of Continuous Cardiac Output Monitors to Measure Trends in Cardiac Output. Anesth Analg. 2010;111(5):1180–92.
13.
go back to reference Critchley LA, Yang XY, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25(3):536–46.CrossRefPubMed Critchley LA, Yang XY, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25(3):536–46.CrossRefPubMed
14.
15.
go back to reference CNSYSTEM MEDZINTECHNIK AG FDA application – K082599 CNSYSTEM MEDZINTECHNIK AG FDA application – K082599
16.
go back to reference HealthSTATS International Pte Ltd FDA application– K060315 HealthSTATS International Pte Ltd FDA application– K060315
17.
go back to reference Finapre Medical Systems BV FDA application – K023723 Finapre Medical Systems BV FDA application – K023723
18.
19.
go back to reference Fortin J, Lerche K, Flot-Zinger D, O’Brien T. Is the standard supplied by the association for the advancement of medical instrumentation the measure of all things for noninvasive continuous hemodynamic devices? Anesthesiology. 2015;122(1):208–9.CrossRefPubMed Fortin J, Lerche K, Flot-Zinger D, O’Brien T. Is the standard supplied by the association for the advancement of medical instrumentation the measure of all things for noninvasive continuous hemodynamic devices? Anesthesiology. 2015;122(1):208–9.CrossRefPubMed
20.
go back to reference Hersh LT, Friedman B, Luczyk W, Sesing J. Evaluation of filtering methods for acquiring radial intra-artery blood pressure waveforms. J Clin Monit Comput. 2015;29(5):659–69. Hersh LT, Friedman B, Luczyk W, Sesing J. Evaluation of filtering methods for acquiring radial intra-artery blood pressure waveforms. J Clin Monit Comput. 2015;29(5):659–69.
21.
go back to reference Romagnoli RS, Quattrone D, Tofani L, Tujjar O, Villa G, Romano SM, De Gaudio A. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care. 2014;18(6):644.CrossRefPubMedPubMedCentral Romagnoli RS, Quattrone D, Tofani L, Tujjar O, Villa G, Romano SM, De Gaudio A. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care. 2014;18(6):644.CrossRefPubMedPubMedCentral
Metadata
Title
Continuous Non-invasive finger cuff CareTaker® comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery
Authors
Irwin Gratz
Edward Deal
Francis Spitz
Martin Baruch
I. Elaine Allen
Julia E. Seaman
Erin Pukenas
Smith Jean
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2017
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-017-0337-z

Other articles of this Issue 1/2017

BMC Anesthesiology 1/2017 Go to the issue