Skip to main content
Top
Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 1/2017

01-01-2017 | Original Article

Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2

Authors: Konstantinos Karamesinis, Anastasia Spyropoulou, Georgia Dalagiorgou, Maria A. Katsianou, Marjan Nokhbehsaim, Svenja Memmert, James Deschner, Heleni Vastardis, Christina Piperi

Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Issue 1/2017

Login to get access

Abstract

Purpose

The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2.

Materials and methods

ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR.

Results

Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h.

Conclusions

Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.
Literature
1.
go back to reference Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42 Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42
2.
go back to reference Akiyama H, Chaboissier MC, Martin JF et al (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828CrossRefPubMedPubMedCentral Akiyama H, Chaboissier MC, Martin JF et al (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828CrossRefPubMedPubMedCentral
3.
go back to reference Altaf FM, Hering TM, Kazmi NH et al (2006) Ascorbate-enhanced chondrogenesis of ATDC5 cells. Eur Cell Mater 12:64–69CrossRefPubMed Altaf FM, Hering TM, Kazmi NH et al (2006) Ascorbate-enhanced chondrogenesis of ATDC5 cells. Eur Cell Mater 12:64–69CrossRefPubMed
4.
go back to reference Amano K, Hata K, Sugita A et al (2009) Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 20:4541–4551CrossRefPubMedPubMedCentral Amano K, Hata K, Sugita A et al (2009) Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 20:4541–4551CrossRefPubMedPubMedCentral
5.
go back to reference Asano T (1986) The effects of mandibular retractive force on the growing rat mandible. Am J Orthod Dentofac Orthop 90:464–474CrossRef Asano T (1986) The effects of mandibular retractive force on the growing rat mandible. Am J Orthod Dentofac Orthop 90:464–474CrossRef
6.
go back to reference Atsumi T, Miwa Y, Kimata K et al (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30:109–116CrossRefPubMed Atsumi T, Miwa Y, Kimata K et al (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30:109–116CrossRefPubMed
7.
go back to reference Basdra EK, Huber LA, Komposch G et al (1994) Mechanical loading triggers specific biochemical responses in mandibular condylar chondrocytes. Biochim Biophys Acta 1222:315–322CrossRefPubMed Basdra EK, Huber LA, Komposch G et al (1994) Mechanical loading triggers specific biochemical responses in mandibular condylar chondrocytes. Biochim Biophys Acta 1222:315–322CrossRefPubMed
8.
go back to reference Chen J, Sorensen KP, Gupta T et al (2009) Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice. Osteoarthr Cartil 17:354–361CrossRefPubMed Chen J, Sorensen KP, Gupta T et al (2009) Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice. Osteoarthr Cartil 17:354–361CrossRefPubMed
9.
go back to reference Chen YJ, Zhang M, Wang JJ (2007) Study on the effects of mechanical pressure to the ultrastructure and secretion ability of mandibular condylar chondrocytes. Arch Oral Biol 52:173–181CrossRefPubMed Chen YJ, Zhang M, Wang JJ (2007) Study on the effects of mechanical pressure to the ultrastructure and secretion ability of mandibular condylar chondrocytes. Arch Oral Biol 52:173–181CrossRefPubMed
10.
go back to reference Dalagiorgou G, Basdra EK, Papavassiliou AG (2010) Polycystin-1: function as a mechanosensor. Int J Biochem Cell Biol 42:1610–1613CrossRefPubMed Dalagiorgou G, Basdra EK, Papavassiliou AG (2010) Polycystin-1: function as a mechanosensor. Int J Biochem Cell Biol 42:1610–1613CrossRefPubMed
11.
go back to reference Dalagiorgou G, Piperi C, Georgopoulou U et al (2013) Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cell Mol Life Sci 70:167–180CrossRefPubMed Dalagiorgou G, Piperi C, Georgopoulou U et al (2013) Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cell Mol Life Sci 70:167–180CrossRefPubMed
12.
go back to reference de Sa MP, Zanoni JN, de Salles CL et al (2013) Morphometric evaluation of condylar cartilage of growing rats in response to mandibular retractive forces. Dental Press J Orthod 18:113–119CrossRefPubMed de Sa MP, Zanoni JN, de Salles CL et al (2013) Morphometric evaluation of condylar cartilage of growing rats in response to mandibular retractive forces. Dental Press J Orthod 18:113–119CrossRefPubMed
13.
go back to reference Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754CrossRefPubMed Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754CrossRefPubMed
14.
go back to reference Engel FE, Khare AG, Boyan BD (1990) Phenotypic changes of rabbit mandibular condylar cartilage cells in culture. J Dent Res 69:1753–1758CrossRefPubMed Engel FE, Khare AG, Boyan BD (1990) Phenotypic changes of rabbit mandibular condylar cartilage cells in culture. J Dent Res 69:1753–1758CrossRefPubMed
15.
go back to reference Enomoto H, Enomoto-Iwamoto M, Iwamoto M et al (2000) Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 275:8695–8702CrossRefPubMed Enomoto H, Enomoto-Iwamoto M, Iwamoto M et al (2000) Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 275:8695–8702CrossRefPubMed
16.
go back to reference Enomoto-Iwamoto M, Enomoto H, Komori T et al (2001) Participation of Cbfa1 in regulation of chondrocyte maturation. Osteoarthr Cartil 9(Suppl A):S76–84 Enomoto-Iwamoto M, Enomoto H, Komori T et al (2001) Participation of Cbfa1 in regulation of chondrocyte maturation. Osteoarthr Cartil 9(Suppl A):S76–84
17.
go back to reference Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454CrossRefPubMed Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454CrossRefPubMed
18.
go back to reference Gargalionis AN, Korkolopoulou P, Farmaki E et al (2015) Polycystin-1 and polycystin-2 are involved in the acquisition of aggressive phenotypes in colorectal cancer. Int J Cancer 136:1515–1527CrossRefPubMed Gargalionis AN, Korkolopoulou P, Farmaki E et al (2015) Polycystin-1 and polycystin-2 are involved in the acquisition of aggressive phenotypes in colorectal cancer. Int J Cancer 136:1515–1527CrossRefPubMed
20.
go back to reference Hou B, Kolpakova-Hart E, Fukai N et al (2009) The polycystic kidney disease 1 (Pkd1) gene is required for the responses of osteochondroprogenitor cells to midpalatal suture expansion in mice. Bone 44:1121–1133CrossRefPubMedPubMedCentral Hou B, Kolpakova-Hart E, Fukai N et al (2009) The polycystic kidney disease 1 (Pkd1) gene is required for the responses of osteochondroprogenitor cells to midpalatal suture expansion in mice. Bone 44:1121–1133CrossRefPubMedPubMedCentral
21.
go back to reference Huang L, Cai X, Li H et al (2015) The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint. Arch Oral Biol 60:622–630CrossRefPubMed Huang L, Cai X, Li H et al (2015) The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint. Arch Oral Biol 60:622–630CrossRefPubMed
22.
go back to reference Huang W, Zhou X, Lefebvre V et al (2000) Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9’s ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol 20:4149–4158CrossRefPubMedPubMedCentral Huang W, Zhou X, Lefebvre V et al (2000) Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9’s ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol 20:4149–4158CrossRefPubMedPubMedCentral
23.
go back to reference Inada M, Yasui T, Nomura S et al (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290CrossRefPubMed Inada M, Yasui T, Nomura S et al (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290CrossRefPubMed
24.
go back to reference Janzen EK, Bluher JA (1965) The cephalometric, anatomic, and histologic changes in Macaca mulatta after application of a continuous-acting retraction force on the mandible. Am J Orthod 51:823–855CrossRefPubMed Janzen EK, Bluher JA (1965) The cephalometric, anatomic, and histologic changes in Macaca mulatta after application of a continuous-acting retraction force on the mandible. Am J Orthod 51:823–855CrossRefPubMed
25.
go back to reference Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482CrossRefPubMed Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482CrossRefPubMed
26.
go back to reference Kantomaa T, Pirttiniemi P (1996) Differences in biologic response of the mandibular condyle to forward traction or opening of the mandible. An experimental study in the rat. Acta Odontol Scand 54:138–144CrossRefPubMed Kantomaa T, Pirttiniemi P (1996) Differences in biologic response of the mandibular condyle to forward traction or opening of the mandible. An experimental study in the rat. Acta Odontol Scand 54:138–144CrossRefPubMed
27.
go back to reference Kantomaa T, Tuominen M, Pirttiniemi P (1994) Effect of mechanical forces on chondrocyte maturation and differentiation in the mandibular condyle of the rat. J Dent Res 73:1150–1156PubMed Kantomaa T, Tuominen M, Pirttiniemi P (1994) Effect of mechanical forces on chondrocyte maturation and differentiation in the mandibular condyle of the rat. J Dent Res 73:1150–1156PubMed
28.
go back to reference Kim IS, Otto F, Zabel B et al (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–170CrossRefPubMed Kim IS, Otto F, Zabel B et al (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–170CrossRefPubMed
29.
30.
go back to reference Kumar D, Lassar AB (2009) The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol Cell Biol 29:4262–4273CrossRefPubMedPubMedCentral Kumar D, Lassar AB (2009) The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization. Mol Cell Biol 29:4262–4273CrossRefPubMedPubMedCentral
31.
go back to reference Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today Rev 75:200–212CrossRef Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today Rev 75:200–212CrossRef
32.
go back to reference Lefebvre V, Behringer RR, de Crombrugghe B (2001) L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthr Cartil 9(Suppl A):S69–S75 Lefebvre V, Behringer RR, de Crombrugghe B (2001) L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthr Cartil 9(Suppl A):S69–S75
33.
go back to reference Marques MR, Hajjar D, Franchini KG et al (2008) Mandibular appliance modulates condylar growth through integrins. J Dent Res 87:153–158CrossRefPubMed Marques MR, Hajjar D, Franchini KG et al (2008) Mandibular appliance modulates condylar growth through integrins. J Dent Res 87:153–158CrossRefPubMed
34.
go back to reference McNamara JA, Carlson DS (1979) Quantitative analysis of temporomandibular joint adaptations to protrusive function. Am J Orthod 76:593–611CrossRefPubMed McNamara JA, Carlson DS (1979) Quantitative analysis of temporomandibular joint adaptations to protrusive function. Am J Orthod 76:593–611CrossRefPubMed
35.
go back to reference Meikle MC (1973) The role of the condyle in the postnatal growth of the mandible. Am J Orthod 64:50–62CrossRefPubMed Meikle MC (1973) The role of the condyle in the postnatal growth of the mandible. Am J Orthod 64:50–62CrossRefPubMed
36.
go back to reference Moss ML, Rankow RM (1968) The role of the functional matrix in mandibular growth. Angle Orthod 38:95–103PubMed Moss ML, Rankow RM (1968) The role of the functional matrix in mandibular growth. Angle Orthod 38:95–103PubMed
37.
go back to reference O’Conor CJ, Case N, Guilak F (2013) Mechanical regulation of chondrogenesis. Stem Cell Res 4:61CrossRef O’Conor CJ, Case N, Guilak F (2013) Mechanical regulation of chondrogenesis. Stem Cell Res 4:61CrossRef
38.
go back to reference Otto F, Thornell AP, Crompton T et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefPubMed Otto F, Thornell AP, Crompton T et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefPubMed
39.
go back to reference Papachristou DJ, Gkretsi V, Rao UN et al (2008) Expression of integrin-linked kinase and its binding partners in chondrosarcoma: association with prognostic significance. Eur J Cancer 44:2518–2525CrossRefPubMedPubMedCentral Papachristou DJ, Gkretsi V, Rao UN et al (2008) Expression of integrin-linked kinase and its binding partners in chondrosarcoma: association with prognostic significance. Eur J Cancer 44:2518–2525CrossRefPubMedPubMedCentral
40.
go back to reference Papachristou DJ, Papachroni KK, Basdra EK et al (2009) Signaling networks and transcription factors regulating mechanotransduction in bone. BioEssays 31:794–804CrossRefPubMed Papachristou DJ, Papachroni KK, Basdra EK et al (2009) Signaling networks and transcription factors regulating mechanotransduction in bone. BioEssays 31:794–804CrossRefPubMed
41.
go back to reference Papachristou DJ, Papadakou E, Basdra EK et al (2008) Involvement of the p38 MAPK-NF-kappaB signal transduction pathway and COX-2 in the pathobiology of meniscus degeneration in humans. Mol Med 14:160–166CrossRefPubMedPubMedCentral Papachristou DJ, Papadakou E, Basdra EK et al (2008) Involvement of the p38 MAPK-NF-kappaB signal transduction pathway and COX-2 in the pathobiology of meniscus degeneration in humans. Mol Med 14:160–166CrossRefPubMedPubMedCentral
42.
go back to reference Papachristou D, Pirttiniemi P, Kantomaa T et al (2006) Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod 28:20–26CrossRefPubMed Papachristou D, Pirttiniemi P, Kantomaa T et al (2006) Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod 28:20–26CrossRefPubMed
43.
go back to reference Papachristou DJ, Pirttiniemi P, Kantomaa T et al (2005) JNK/ERK-AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 124:215–223CrossRefPubMed Papachristou DJ, Pirttiniemi P, Kantomaa T et al (2005) JNK/ERK-AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 124:215–223CrossRefPubMed
44.
go back to reference Papadopoulou AK, Papachristou DJ, Chatzopoulos SA et al (2007) Load application induces changes in the expression levels of Sox-9, FGFR-3 and VEGF in condylar chondrocytes. FEBS Lett 581:2041–2046CrossRefPubMed Papadopoulou AK, Papachristou DJ, Chatzopoulos SA et al (2007) Load application induces changes in the expression levels of Sox-9, FGFR-3 and VEGF in condylar chondrocytes. FEBS Lett 581:2041–2046CrossRefPubMed
45.
go back to reference Perinetti G, Primožič J, Franchi L et al (2015) Treatment effects of removable functional appliances in pre-pubertal and pubertal Class II patients: a systematic review and meta-analysis of controlled studies. PLoS One 10:e0141198CrossRefPubMedPubMedCentral Perinetti G, Primožič J, Franchi L et al (2015) Treatment effects of removable functional appliances in pre-pubertal and pubertal Class II patients: a systematic review and meta-analysis of controlled studies. PLoS One 10:e0141198CrossRefPubMedPubMedCentral
47.
go back to reference Rabie AB, Hagg U (2002) Factors regulating mandibular condylar growth. Am J Orthod Dentofac Orthop 122:401–409CrossRef Rabie AB, Hagg U (2002) Factors regulating mandibular condylar growth. Am J Orthod Dentofac Orthop 122:401–409CrossRef
48.
go back to reference Rabie AB, She TT, Hagg U (2003) Functional appliance therapy accelerates and enhances condylar growth. Am J Orthod Dentofac Orthop 123:40–48CrossRef Rabie AB, She TT, Hagg U (2003) Functional appliance therapy accelerates and enhances condylar growth. Am J Orthod Dentofac Orthop 123:40–48CrossRef
49.
go back to reference Rabie AB, Tang GH, Hagg U (2004) Cbfa1 couples chondrocytes maturation and endochondral ossification in rat mandibular condylar cartilage. Arch Oral Biol 49:109–118CrossRefPubMed Rabie AB, Tang GH, Hagg U (2004) Cbfa1 couples chondrocytes maturation and endochondral ossification in rat mandibular condylar cartilage. Arch Oral Biol 49:109–118CrossRefPubMed
50.
go back to reference Ragan PM, Badger AM, Cook M et al (1999) Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration. J Orthop Res 17:836–842CrossRefPubMed Ragan PM, Badger AM, Cook M et al (1999) Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration. J Orthop Res 17:836–842CrossRefPubMed
51.
go back to reference Ramage L, Nuki G, Salter DM (2009) Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading. Scand J Med Sci Sports 19:457–469CrossRefPubMed Ramage L, Nuki G, Salter DM (2009) Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading. Scand J Med Sci Sports 19:457–469CrossRefPubMed
52.
go back to reference Rath-Deschner B, Daratsianos N, Dühr S et al (2010) The significance of RUNX2 in postnatal development of the mandibular condyle. J Orofac Orthop 71:17–31CrossRefPubMed Rath-Deschner B, Daratsianos N, Dühr S et al (2010) The significance of RUNX2 in postnatal development of the mandibular condyle. J Orofac Orthop 71:17–31CrossRefPubMed
54.
55.
go back to reference Saito T, Ikeda T, Nakamura K et al (2007) S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep 8:504–509CrossRefPubMedPubMedCentral Saito T, Ikeda T, Nakamura K et al (2007) S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep 8:504–509CrossRefPubMedPubMedCentral
56.
go back to reference Shibata S, Suda N, Suzuki S et al (2006) An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J Anat 208:169–177CrossRefPubMedPubMedCentral Shibata S, Suda N, Suzuki S et al (2006) An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. J Anat 208:169–177CrossRefPubMedPubMedCentral
57.
go back to reference Shukunami C, Ishizeki K, Atsumi T et al (1997) Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro. J Bone Miner Res 12:1174–1188CrossRefPubMed Shukunami C, Ishizeki K, Atsumi T et al (1997) Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro. J Bone Miner Res 12:1174–1188CrossRefPubMed
58.
go back to reference Shukunami C, Shigeno C, Atsumi T et al (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133:457–468CrossRefPubMed Shukunami C, Shigeno C, Atsumi T et al (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133:457–468CrossRefPubMed
59.
go back to reference Spyropoulou A, Gargalionis A, Dalagiorgou G et al (2014) Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: modulation of cell proliferation, migration, and colony formation. Neuromol Med 16:70–82CrossRef Spyropoulou A, Gargalionis A, Dalagiorgou G et al (2014) Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: modulation of cell proliferation, migration, and colony formation. Neuromol Med 16:70–82CrossRef
60.
go back to reference Spyropoulou A, Karamesinis K, Basdra EK (2015) Mechanotransduction pathways in bone pathobiology. Biochim Biophys Acta 1852:1700–1708CrossRefPubMed Spyropoulou A, Karamesinis K, Basdra EK (2015) Mechanotransduction pathways in bone pathobiology. Biochim Biophys Acta 1852:1700–1708CrossRefPubMed
61.
go back to reference Stellzig A, Steegmayer-Gilde G, Basdra EK (1999) Elastic activator for treatment of open bite. Br J Orthod 26:89–92CrossRefPubMed Stellzig A, Steegmayer-Gilde G, Basdra EK (1999) Elastic activator for treatment of open bite. Br J Orthod 26:89–92CrossRefPubMed
62.
go back to reference Takano-Yamamoto T, Soma S, Nakagawa K et al (1991) Comparison of the effects of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occipital synchondrosis in vitro. Am J Orthod Dentofac Orthop 99:448–455CrossRef Takano-Yamamoto T, Soma S, Nakagawa K et al (1991) Comparison of the effects of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occipital synchondrosis in vitro. Am J Orthod Dentofac Orthop 99:448–455CrossRef
63.
go back to reference Takeda S, Bonnamy JP, Owen MJ et al (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481CrossRefPubMedPubMedCentral Takeda S, Bonnamy JP, Owen MJ et al (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481CrossRefPubMedPubMedCentral
64.
go back to reference Tare RS, Howard D, Pound JC et al (2005) Tissue engineering strategies for cartilage generation—micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Biochem Biophys Res 333:609–621CrossRef Tare RS, Howard D, Pound JC et al (2005) Tissue engineering strategies for cartilage generation—micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Biochem Biophys Res 333:609–621CrossRef
65.
go back to reference Temu TM, Wu KY, Gruppuso PA et al (2010) The mechanism of ascorbic acid-induced differentiation of ATDC5 chondrogenic cells. Am J Physiol Endocrinol Metab 299:E325–E334PubMedPubMedCentral Temu TM, Wu KY, Gruppuso PA et al (2010) The mechanism of ascorbic acid-induced differentiation of ATDC5 chondrogenic cells. Am J Physiol Endocrinol Metab 299:E325–E334PubMedPubMedCentral
66.
go back to reference Tsolakis AI, Spyropoulos MN, Katsavrias E et al (1997) Effects of altered mandibular function on mandibular growth after condylectomy. Eur J Orthod 19:9–19CrossRefPubMed Tsolakis AI, Spyropoulos MN, Katsavrias E et al (1997) Effects of altered mandibular function on mandibular growth after condylectomy. Eur J Orthod 19:9–19CrossRefPubMed
67.
go back to reference Varela A, Piperi C, Sigala F et al (2015) Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep 5:13461CrossRefPubMedPubMedCentral Varela A, Piperi C, Sigala F et al (2015) Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep 5:13461CrossRefPubMedPubMedCentral
68.
go back to reference Weiss A, von der Mark K, Silbermann M (1986) A tissue culture system supporting cartilage cell differentiation, extracellular mineralization, and subsequent bone formation, using mouse condylar progenitor cells. Cell Differ 19:103–113CrossRefPubMed Weiss A, von der Mark K, Silbermann M (1986) A tissue culture system supporting cartilage cell differentiation, extracellular mineralization, and subsequent bone formation, using mouse condylar progenitor cells. Cell Differ 19:103–113CrossRefPubMed
69.
go back to reference Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13CrossRefPubMed Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13CrossRefPubMed
70.
71.
72.
go back to reference Xiao Z, Zhang S, Magenheimer BS et al (2008) Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem 283:12624–12634CrossRefPubMedPubMedCentral Xiao Z, Zhang S, Magenheimer BS et al (2008) Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem 283:12624–12634CrossRefPubMedPubMedCentral
73.
go back to reference Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895CrossRefPubMedPubMedCentral Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895CrossRefPubMedPubMedCentral
74.
go back to reference Yamashita S, Andoh M, Ueno-Kudoh H et al (2009) Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 15:2231–2240CrossRef Yamashita S, Andoh M, Ueno-Kudoh H et al (2009) Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 15:2231–2240CrossRef
75.
go back to reference Yao Y, Wang Y (2013) ATDC5: an excellent in vitro model cell line for skeletal development. J Cell Biochem 114:1223–1229CrossRefPubMed Yao Y, Wang Y (2013) ATDC5: an excellent in vitro model cell line for skeletal development. J Cell Biochem 114:1223–1229CrossRefPubMed
76.
go back to reference Yousefian J, Firouzian F, Shanfeld J et al (1995) A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure. Am J Orthod Dentofac Orthop 108:402–409CrossRef Yousefian J, Firouzian F, Shanfeld J et al (1995) A new experimental model for studying the response of periodontal ligament cells to hydrostatic pressure. Am J Orthod Dentofac Orthop 108:402–409CrossRef
77.
go back to reference Zhang M, Chen YJ, Ono T et al (2008) Crosstalk between integrin and G protein pathways involved in mechanotransduction in mandibular condylar chondrocytes under pressure. Arch Biochem Biophys 474:102–108CrossRefPubMed Zhang M, Chen YJ, Ono T et al (2008) Crosstalk between integrin and G protein pathways involved in mechanotransduction in mandibular condylar chondrocytes under pressure. Arch Biochem Biophys 474:102–108CrossRefPubMed
78.
go back to reference Zhang M, Wang JJ, Chen YJ (2006) Effects of mechanical pressure on intracellular calcium release channel and cytoskeletal structure in rabbit mandibular condylar chondrocytes. Life Sci 78:2480–2487CrossRefPubMed Zhang M, Wang JJ, Chen YJ (2006) Effects of mechanical pressure on intracellular calcium release channel and cytoskeletal structure in rabbit mandibular condylar chondrocytes. Life Sci 78:2480–2487CrossRefPubMed
80.
go back to reference Ziros PG, Basdra EK, Papavassiliou AG (2008) Runx2: of bone and stretch. Int J Biochem Cell Biol 40:1659–1663CrossRefPubMed Ziros PG, Basdra EK, Papavassiliou AG (2008) Runx2: of bone and stretch. Int J Biochem Cell Biol 40:1659–1663CrossRefPubMed
81.
go back to reference Zurfluh MA, Kloukos D, Patcas R et al (2015) Effect of chin-cup treatment on the temporomandibular joint: a systematic review. Eur J Orthod 37:314–324CrossRefPubMed Zurfluh MA, Kloukos D, Patcas R et al (2015) Effect of chin-cup treatment on the temporomandibular joint: a systematic review. Eur J Orthod 37:314–324CrossRefPubMed
Metadata
Title
Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2
Authors
Konstantinos Karamesinis
Anastasia Spyropoulou
Georgia Dalagiorgou
Maria A. Katsianou
Marjan Nokhbehsaim
Svenja Memmert
James Deschner
Heleni Vastardis
Christina Piperi
Publication date
01-01-2017
Publisher
Springer Medizin
Published in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Issue 1/2017
Print ISSN: 1434-5293
Electronic ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-016-0061-1

Other articles of this Issue 1/2017

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 1/2017 Go to the issue