Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Research

Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates

Authors: Eduardo López-Larraz, Luis Montesano, Ángel Gil-Agudo, Javier Minguez

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Background

Brain-machine interfaces (BMI) have recently been integrated within motor rehabilitation therapies by actively involving the central nervous system (CNS) within the exercises. For instance, the online decoding of intention of motion of a limb from pre-movement EEG correlates is being used to convert passive rehabilitation strategies into active ones mediated by robotics. As early stages of upper limb motor rehabilitation usually focus on analytic single-joint mobilizations, this paper investigates the feasibility of building BMI decoders for these specific types of movements.

Methods

Two different experiments were performed within this study. For the first one, six healthy subjects performed seven self-initiated upper-limb analytic movements, involving from proximal to distal articulations. For the second experiment, three spinal cord injury patients performed two of the previously studied movements with their healthy elbow and paralyzed wrist. In both cases EEG neural correlates such as the event-related desynchronization (ERD) and movement related cortical potentials (MRCP) were analyzed, as well as the accuracies of continuous decoders built using the pre-movement features of these correlates (i.e., the intention of motion was decoded before movement onset).

Results

The studied movements could be decoded in both healthy subjects and patients. For healthy subjects there were significant differences in the EEG correlates and decoding accuracies, dependent on the moving joint. Percentages of correctly anticipated trials ranged from 75% to 40% (with chance level being around 20%), with better performances for proximal than for distal movements. For the movements studied for the SCI patients the accuracies were similar to the ones of the healthy subjects.

Conclusions

This paper shows how it is possible to build continuous decoders to detect movement intention from EEG correlates for seven different upper-limb analytic movements. Furthermore we report differences in accuracies among movements, which might have an impact on the design of the rehabilitation technologies that will integrate this new type of information. The applicability of the decoders was shown in a clinical population, with similar performances between healthy subjects and patients.
Literature
1.
go back to reference Granat MH, Ferguson AC, Andrews BJ, Delargy M: The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury–observed benefits during gait studies. Paraplegia. 1993, 31 (4): 207-215. 10.1038/sc.1993.39.CrossRefPubMed Granat MH, Ferguson AC, Andrews BJ, Delargy M: The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury–observed benefits during gait studies. Paraplegia. 1993, 31 (4): 207-215. 10.1038/sc.1993.39.CrossRefPubMed
2.
go back to reference Kwakkel G, Kollen BJ, Krebs HI: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008, 22 (2): 111-121.CrossRefPubMedPubMedCentral Kwakkel G, Kollen BJ, Krebs HI: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008, 22 (2): 111-121.CrossRefPubMedPubMedCentral
3.
go back to reference Asín G, Cano-de-la-Cuerda R, López-Larraz E, Metrot J, Molinari M, van Dokkum LE: Emerging perspectives in stroke rehabilitation. Emerging Therapies in Neurorehabilitation. Edited by: Pons JL, Torricelli D. 2014, Berlin Heidelberg: Springer, 3-21.CrossRef Asín G, Cano-de-la-Cuerda R, López-Larraz E, Metrot J, Molinari M, van Dokkum LE: Emerging perspectives in stroke rehabilitation. Emerging Therapies in Neurorehabilitation. Edited by: Pons JL, Torricelli D. 2014, Berlin Heidelberg: Springer, 3-21.CrossRef
4.
go back to reference Daly JJ, Wolpaw JR: Brain–computer interfaces in neurological rehabilitation. Lancet Neurology. 2008, 7 (11): 1032-1043. 10.1016/S1474-4422(08)70223-0.CrossRefPubMed Daly JJ, Wolpaw JR: Brain–computer interfaces in neurological rehabilitation. Lancet Neurology. 2008, 7 (11): 1032-1043. 10.1016/S1474-4422(08)70223-0.CrossRefPubMed
5.
go back to reference Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013, 74 (1): 100-108. 10.1002/ana.23879.CrossRefPubMedPubMedCentral Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013, 74 (1): 100-108. 10.1002/ana.23879.CrossRefPubMedPubMedCentral
6.
go back to reference Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008, 39 (3): 910-917. 10.1161/STROKEAHA.107.505313.CrossRefPubMed Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008, 39 (3): 910-917. 10.1161/STROKEAHA.107.505313.CrossRefPubMed
7.
go back to reference Pfurtscheller G, Lopes da Silva FH: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999, 110 (11): 1842-1857. 10.1016/S1388-2457(99)00141-8.CrossRefPubMed Pfurtscheller G, Lopes da Silva FH: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999, 110 (11): 1842-1857. 10.1016/S1388-2457(99)00141-8.CrossRefPubMed
8.
go back to reference Shibasaki H, Hallett M: What is the Bereitschaftspotential?. Clin Neurophysiol. 2006, 117 (11): 2341-2356. 10.1016/j.clinph.2006.04.025.CrossRefPubMed Shibasaki H, Hallett M: What is the Bereitschaftspotential?. Clin Neurophysiol. 2006, 117 (11): 2341-2356. 10.1016/j.clinph.2006.04.025.CrossRefPubMed
9.
go back to reference Morash V, Bai O, Furlani S, Lin P, Hallett M: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin Neurophysiol. 2008, 119 (11): 2570-2578. 10.1016/j.clinph.2008.08.013.CrossRefPubMedPubMedCentral Morash V, Bai O, Furlani S, Lin P, Hallett M: Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin Neurophysiol. 2008, 119 (11): 2570-2578. 10.1016/j.clinph.2008.08.013.CrossRefPubMedPubMedCentral
10.
go back to reference Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei DY, Schneider L, Houdayer E, Chen X, Hallett M: Prediction of human voluntary movement before it occurs. Clin Neurophysiol. 2011, 122 (2): 364-372. 10.1016/j.clinph.2010.07.010.CrossRefPubMed Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei DY, Schneider L, Houdayer E, Chen X, Hallett M: Prediction of human voluntary movement before it occurs. Clin Neurophysiol. 2011, 122 (2): 364-372. 10.1016/j.clinph.2010.07.010.CrossRefPubMed
11.
go back to reference Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012, 590 (7): 1669-1682.CrossRefPubMedPubMedCentral Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D: Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012, 590 (7): 1669-1682.CrossRefPubMedPubMedCentral
12.
go back to reference Antelis JM, Montesano L, Ramos-Murguialday A, Birbaumer N, Minguez J: Continuous decoding of intention to move from contralesional hemisphere brain oscillations in severely affected chronic stroke patients. 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, San Diego, USA: IEEE-EMBS, 4099-4103. Antelis JM, Montesano L, Ramos-Murguialday A, Birbaumer N, Minguez J: Continuous decoding of intention to move from contralesional hemisphere brain oscillations in severely affected chronic stroke patients. 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, San Diego, USA: IEEE-EMBS, 4099-4103.
13.
go back to reference López-Larraz E, Antelis JM, Montesano L, Gil-Agudo A, Minguez J: Continuous decoding of Motor Attempt and Motor Imagery from EEG Activity in Spinal Cord Injury Patients. 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, San Diego, USA: IEEE-EMBS, 1798-1801. López-Larraz E, Antelis JM, Montesano L, Gil-Agudo A, Minguez J: Continuous decoding of Motor Attempt and Motor Imagery from EEG Activity in Spinal Cord Injury Patients. 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, San Diego, USA: IEEE-EMBS, 1798-1801.
14.
go back to reference Lew E, Chavarriaga R, Silvoni S, Millán JdR: Detection of self-paced reaching movement intention from EEG signals. Frontiers Neuroeng. 2012, 5: 13-CrossRef Lew E, Chavarriaga R, Silvoni S, Millán JdR: Detection of self-paced reaching movement intention from EEG signals. Frontiers Neuroeng. 2012, 5: 13-CrossRef
15.
go back to reference Green JB, Sora E, Bialy Y, Ricamato A, Thatcher RW: Cortical motor reorganization after paraplegia: an EEG study. Neurology. 1999, 53 (4): 736-743. 10.1212/WNL.53.4.736.CrossRefPubMed Green JB, Sora E, Bialy Y, Ricamato A, Thatcher RW: Cortical motor reorganization after paraplegia: an EEG study. Neurology. 1999, 53 (4): 736-743. 10.1212/WNL.53.4.736.CrossRefPubMed
16.
go back to reference Jigjid E, Kawashima N, Ogata H, Nakazawa K, Akai M, Eto F, Haga N: Effects of passive leg movement on the oxygenation level of lower limb muscle in chronic stroke patients. Neurorehabil Neural Repair. 2008, 22 (1): 40-49.CrossRefPubMed Jigjid E, Kawashima N, Ogata H, Nakazawa K, Akai M, Eto F, Haga N: Effects of passive leg movement on the oxygenation level of lower limb muscle in chronic stroke patients. Neurorehabil Neural Repair. 2008, 22 (1): 40-49.CrossRefPubMed
17.
go back to reference Smedes F, van der Salm A, Koel G, Oosterveld F: Manual mobilization of the wrist: a pilot study in rehabilitation of patients with a chronic hemiplegic hand post-stroke. J Hand Therapy. 2014, 27 (3): 209-216. 10.1016/j.jht.2013.12.011.CrossRef Smedes F, van der Salm A, Koel G, Oosterveld F: Manual mobilization of the wrist: a pilot study in rehabilitation of patients with a chronic hemiplegic hand post-stroke. J Hand Therapy. 2014, 27 (3): 209-216. 10.1016/j.jht.2013.12.011.CrossRef
18.
go back to reference Solis-Escalante T, Müller-Putz G, Pfurtscheller G: Overt foot movement detection in one single laplacian eeg derivation. J Neurosci Methods. 2008, 175 (1): 148-153. 10.1016/j.jneumeth.2008.07.019.CrossRefPubMed Solis-Escalante T, Müller-Putz G, Pfurtscheller G: Overt foot movement detection in one single laplacian eeg derivation. J Neurosci Methods. 2008, 175 (1): 148-153. 10.1016/j.jneumeth.2008.07.019.CrossRefPubMed
19.
go back to reference Townsend G, Graimann B, Pfurtscheller G: Continuous EEG classification during motor imagery–simulation of an asynchronous BCI. IEEE Trans Neural Syst Rehabil Eng. 2004, 12 (2): 258-265. 10.1109/TNSRE.2004.827220.CrossRefPubMed Townsend G, Graimann B, Pfurtscheller G: Continuous EEG classification during motor imagery–simulation of an asynchronous BCI. IEEE Trans Neural Syst Rehabil Eng. 2004, 12 (2): 258-265. 10.1109/TNSRE.2004.827220.CrossRefPubMed
20.
go back to reference Awwad Shiekh Hasan B, Gan JQ: Unsupervised movement onset detection from EEG recorded during self-paced real hand movement. Med Biol Eng Comput. 2010, 48 (3): 245-253. 10.1007/s11517-009-0550-0.CrossRefPubMed Awwad Shiekh Hasan B, Gan JQ: Unsupervised movement onset detection from EEG recorded during self-paced real hand movement. Med Biol Eng Comput. 2010, 48 (3): 245-253. 10.1007/s11517-009-0550-0.CrossRefPubMed
21.
go back to reference Ibañez J, Serrano JI, del Castillo MD, Barrios L, Gallego JA, Rocon E: An EEG-based design for the online detection of movement intention. Advances in Computational Intelligence. 2011, Berlin Heidelberg: Springer, 370-377.CrossRef Ibañez J, Serrano JI, del Castillo MD, Barrios L, Gallego JA, Rocon E: An EEG-based design for the online detection of movement intention. Advances in Computational Intelligence. 2011, Berlin Heidelberg: Springer, 370-377.CrossRef
22.
go back to reference Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D: Detection of movement intention from single-trial movement-related cortical potentials. J Neural Eng. 2011, 8 (6): 066009-10.1088/1741-2560/8/6/066009.CrossRefPubMed Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D: Detection of movement intention from single-trial movement-related cortical potentials. J Neural Eng. 2011, 8 (6): 066009-10.1088/1741-2560/8/6/066009.CrossRefPubMed
23.
go back to reference Xu R, Jiang N, Lin C, Mrachacz-Kersting N, Dremstrup K, Farina D: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Trans Biomed Eng. 2014, 61 (2): 288-296.CrossRefPubMed Xu R, Jiang N, Lin C, Mrachacz-Kersting N, Dremstrup K, Farina D: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Trans Biomed Eng. 2014, 61 (2): 288-296.CrossRefPubMed
24.
go back to reference Pfurtscheller G, Neuper C, Andrew C, Edlinger G: Foot and hand area mu rhythms. Int J Psychophysiol. 1997, 26 (1-3): 121-135. 10.1016/S0167-8760(97)00760-5.CrossRefPubMed Pfurtscheller G, Neuper C, Andrew C, Edlinger G: Foot and hand area mu rhythms. Int J Psychophysiol. 1997, 26 (1-3): 121-135. 10.1016/S0167-8760(97)00760-5.CrossRefPubMed
25.
go back to reference Pfurtscheller G, Zalaudek K, Neuper C: Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol. 1998, 109 (2): 154-160. 10.1016/S0924-980X(97)00070-2.CrossRefPubMed Pfurtscheller G, Zalaudek K, Neuper C: Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol. 1998, 109 (2): 154-160. 10.1016/S0924-980X(97)00070-2.CrossRefPubMed
26.
go back to reference Jankelowitz SK, Colebatch JG: Movement-related potentials associated with self-paced, cued and imagined arm movements. Exp Brain Res. 2002, 147 (1): 98-107. 10.1007/s00221-002-1220-8.CrossRefPubMed Jankelowitz SK, Colebatch JG: Movement-related potentials associated with self-paced, cued and imagined arm movements. Exp Brain Res. 2002, 147 (1): 98-107. 10.1007/s00221-002-1220-8.CrossRefPubMed
27.
go back to reference Wang T, Deng J, He B: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol. 2004, 115 (12): 2744-2753. 10.1016/j.clinph.2004.06.022.CrossRefPubMed Wang T, Deng J, He B: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol. 2004, 115 (12): 2744-2753. 10.1016/j.clinph.2004.06.022.CrossRefPubMed
28.
go back to reference Pfurtscheller G, Brunner C, Schlögl a: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 2006, 31 (1): 153-159. 10.1016/j.neuroimage.2005.12.003.CrossRefPubMed Pfurtscheller G, Brunner C, Schlögl a: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 2006, 31 (1): 153-159. 10.1016/j.neuroimage.2005.12.003.CrossRefPubMed
29.
go back to reference Deng J, Yao J, Dewald JPA: Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm. J Neural Eng. 2005, 2 (4): 131-138. 10.1088/1741-2560/2/4/009.CrossRefPubMed Deng J, Yao J, Dewald JPA: Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm. J Neural Eng. 2005, 2 (4): 131-138. 10.1088/1741-2560/2/4/009.CrossRefPubMed
30.
go back to reference Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F: Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. NeuroImage. 1999, 10 (6): 658-665. 10.1006/nimg.1999.0504.CrossRefPubMed Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F: Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. NeuroImage. 1999, 10 (6): 658-665. 10.1006/nimg.1999.0504.CrossRefPubMed
31.
go back to reference Dornhege G, Blankertz B, Curio G, Müller KR: Boosting bit rates in non-invasive EEG single trial classification by feature combination and multi class paradigm. IEEE Trans Biomed Eng. 2004, 51 (6): 1-10.CrossRef Dornhege G, Blankertz B, Curio G, Müller KR: Boosting bit rates in non-invasive EEG single trial classification by feature combination and multi class paradigm. IEEE Trans Biomed Eng. 2004, 51 (6): 1-10.CrossRef
32.
go back to reference Velu PD, de Sa VR: Single-trial classification of gait and point movement preparation from human EEG. Frontiers Neurosci. 2013, 7: 84-CrossRef Velu PD, de Sa VR: Single-trial classification of gait and point movement preparation from human EEG. Frontiers Neurosci. 2013, 7: 84-CrossRef
33.
go back to reference Ibáñez J, Serrano JI, Del Castillo MD, Monge-Pereira E, Molina-Rueda F, Alguacil-Diego I, Pons JL: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials. J Neural Eng. 2014, 11 (5): 056009-10.1088/1741-2560/11/5/056009.CrossRefPubMed Ibáñez J, Serrano JI, Del Castillo MD, Monge-Pereira E, Molina-Rueda F, Alguacil-Diego I, Pons JL: Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials. J Neural Eng. 2014, 11 (5): 056009-10.1088/1741-2560/11/5/056009.CrossRefPubMed
34.
go back to reference Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A: International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med. 2011, 34 (6): 547-554. 10.1179/107902611X13186000420242.CrossRefPubMedPubMedCentral Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, Mulcahey MJ, Krassioukov A: International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med. 2011, 34 (6): 547-554. 10.1179/107902611X13186000420242.CrossRefPubMedPubMedCentral
35.
go back to reference Maeder CL, Sannelli C, Haufe S, Blankertz B: Pre-stimulus sensorimotor rhythms influence brain-computer interface classification performance. IEEE Trans Neural Syst Rehabil Eng: Publication IEEE Eng Med Biol Soc. 2012, 20 (5): 653-662.CrossRef Maeder CL, Sannelli C, Haufe S, Blankertz B: Pre-stimulus sensorimotor rhythms influence brain-computer interface classification performance. IEEE Trans Neural Syst Rehabil Eng: Publication IEEE Eng Med Biol Soc. 2012, 20 (5): 653-662.CrossRef
36.
go back to reference McFarland DJ, McCane LM, David SV, Wolpaw JR: Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol. 1997, 103 (3): 386-394. 10.1016/S0013-4694(97)00022-2.CrossRefPubMed McFarland DJ, McCane LM, David SV, Wolpaw JR: Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol. 1997, 103 (3): 386-394. 10.1016/S0013-4694(97)00022-2.CrossRefPubMed
37.
go back to reference Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR: Optimizing spatial filters for robust EEG single-trial analysis. Signal Process Mag IEEE. 2008, 25 (1): 41-56.CrossRef Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR: Optimizing spatial filters for robust EEG single-trial analysis. Signal Process Mag IEEE. 2008, 25 (1): 41-56.CrossRef
38.
go back to reference Graimann B, Pfurtscheller G: Quantification and visualization of event-related changes in oscillatory brain activity in the time frequency domain. Prog Brain Res. 2006, 159: 79-97.CrossRefPubMed Graimann B, Pfurtscheller G: Quantification and visualization of event-related changes in oscillatory brain activity in the time frequency domain. Prog Brain Res. 2006, 159: 79-97.CrossRefPubMed
39.
go back to reference Hjorth B: An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol. 1975, 39 (5): 526-530. 10.1016/0013-4694(75)90056-5.CrossRefPubMed Hjorth B: An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol. 1975, 39 (5): 526-530. 10.1016/0013-4694(75)90056-5.CrossRefPubMed
40.
go back to reference Tallon-Baudry C, Bertrand O, Delpuech C, Permier J: Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci. 1997, 17 (2): 722-734.PubMed Tallon-Baudry C, Bertrand O, Delpuech C, Permier J: Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci. 1997, 17 (2): 722-734.PubMed
41.
go back to reference Garipelli G, Chavarriaga R, Millán JdR: Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J Neural Eng. 2013, 10 (3): 036014-10.1088/1741-2560/10/3/036014.CrossRefPubMed Garipelli G, Chavarriaga R, Millán JdR: Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J Neural Eng. 2013, 10 (3): 036014-10.1088/1741-2560/10/3/036014.CrossRefPubMed
42.
go back to reference Bos R, de Waele S: Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Trans Instrum Meas. 2002, 51 (6): 1289-1294. 10.1109/TIM.2002.808031.CrossRef Bos R, de Waele S: Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Trans Instrum Meas. 2002, 51 (6): 1289-1294. 10.1109/TIM.2002.808031.CrossRef
43.
go back to reference Clemmensen L, Hastie T, Witten D, Ersbøll B: Sparse discriminant analysis. Technometrics. 2011, 53 (4): 406-413. 10.1198/TECH.2011.08118.CrossRef Clemmensen L, Hastie T, Witten D, Ersbøll B: Sparse discriminant analysis. Technometrics. 2011, 53 (4): 406-413. 10.1198/TECH.2011.08118.CrossRef
44.
go back to reference Fawcett T: An introduction to ROC analysis. Pattern Recognit Lett. 2006, 27 (8): 861-874. 10.1016/j.patrec.2005.10.010.CrossRef Fawcett T: An introduction to ROC analysis. Pattern Recognit Lett. 2006, 27 (8): 861-874. 10.1016/j.patrec.2005.10.010.CrossRef
45.
go back to reference Bradley AP: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30 (7): 1145-1159. 10.1016/S0031-3203(96)00142-2.CrossRef Bradley AP: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30 (7): 1145-1159. 10.1016/S0031-3203(96)00142-2.CrossRef
46.
go back to reference Müller-Putz GR, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G: Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 2007, 1137: 84-91.CrossRefPubMed Müller-Putz GR, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G: Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 2007, 1137: 84-91.CrossRefPubMed
47.
go back to reference Tangwiriyasakul C, Verhagen R, Rutten WLC, van Putten MJAM: Temporal evolution of event-related desynchronization in acute stroke: a pilot study. Clin Neurophysiol. 2014, 125 (6): 1112-1120. 10.1016/j.clinph.2013.10.047.CrossRefPubMed Tangwiriyasakul C, Verhagen R, Rutten WLC, van Putten MJAM: Temporal evolution of event-related desynchronization in acute stroke: a pilot study. Clin Neurophysiol. 2014, 125 (6): 1112-1120. 10.1016/j.clinph.2013.10.047.CrossRefPubMed
48.
go back to reference Stȩpień M: Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett. 2011, 488 (1): 17-21. 10.1016/j.neulet.2010.10.072.CrossRefPubMed Stȩpień M: Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett. 2011, 488 (1): 17-21. 10.1016/j.neulet.2010.10.072.CrossRefPubMed
49.
go back to reference Hotz-Boendermaker S, Funk M, Summers P, Brugger P, Hepp-Reymond MC, Curt A, Kollias SS: Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. NeuroImage. 2008, 39 (1): 383-394. 10.1016/j.neuroimage.2007.07.065.CrossRefPubMed Hotz-Boendermaker S, Funk M, Summers P, Brugger P, Hepp-Reymond MC, Curt A, Kollias SS: Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. NeuroImage. 2008, 39 (1): 383-394. 10.1016/j.neuroimage.2007.07.065.CrossRefPubMed
50.
go back to reference Soria-Frisch A: A critical review on the usage of ensembles for BCI. Towards Practical Brain-Computer Interfaces. 2013, Berlin Heidelberg: Springer, 41-65. Soria-Frisch A: A critical review on the usage of ensembles for BCI. Towards Practical Brain-Computer Interfaces. 2013, Berlin Heidelberg: Springer, 41-65.
Metadata
Title
Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates
Authors
Eduardo López-Larraz
Luis Montesano
Ángel Gil-Agudo
Javier Minguez
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-153

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue