Skip to main content
Top
Published in: BMC Medicine 1/2017

Open Access 01-12-2017 | Research article

Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020

Authors: Edwin Michael, Brajendra K. Singh, Benjamin K. Mayala, Morgan E. Smith, Scott Hampton, Jaroslaw Nabrzyski

Published in: BMC Medicine | Issue 1/2017

Login to get access

Abstract

Background

There are growing demands for predicting the prospects of achieving the global elimination of neglected tropical diseases as a result of the institution of large-scale nation-wide intervention programs by the WHO-set target year of 2020. Such predictions will be uncertain due to the impacts that spatial heterogeneity and scaling effects will have on parasite transmission processes, which will introduce significant aggregation errors into any attempt aiming to predict the outcomes of interventions at the broader spatial levels relevant to policy making. We describe a modeling platform that addresses this problem of upscaling from local settings to facilitate predictions at regional levels by the discovery and use of locality-specific transmission models, and we illustrate the utility of using this approach to evaluate the prospects for eliminating the vector-borne disease, lymphatic filariasis (LF), in sub-Saharan Africa by the WHO target year of 2020 using currently applied or newly proposed intervention strategies.

Methods and Results

We show how a computational platform that couples site-specific data discovery with model fitting and calibration can allow both learning of local LF transmission models and simulations of the impact of interventions that take a fuller account of the fine-scale heterogeneous transmission of this parasitic disease within endemic countries. We highlight how such a spatially hierarchical modeling tool that incorporates actual data regarding the roll-out of national drug treatment programs and spatial variability in infection patterns into the modeling process can produce more realistic predictions of timelines to LF elimination at coarse spatial scales, ranging from district to country to continental levels. Our results show that when locally applicable extinction thresholds are used, only three countries are likely to meet the goal of LF elimination by 2020 using currently applied mass drug treatments, and that switching to more intensive drug regimens, increasing the frequency of treatments, or switching to new triple drug regimens will be required if LF elimination is to be accelerated in Africa. The proportion of countries that would meet the goal of eliminating LF by 2020 may, however, reach up to 24/36 if the WHO 1% microfilaremia prevalence threshold is used and sequential mass drug deliveries are applied in countries.

Conclusions

We have developed and applied a data-driven spatially hierarchical computational platform that uses the discovery of locally applicable transmission models in order to predict the prospects for eliminating the macroparasitic disease, LF, at the coarser country level in sub-Saharan Africa. We show that fine-scale spatial heterogeneity in local parasite transmission and extinction dynamics, as well as the exact nature of intervention roll-outs in countries, will impact the timelines to achieving national LF elimination on this continent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson RM, Truscott JE, Pullan RL, Brooker SJ, Hollingsworth TD. How effective is school-based deworming for the community-wide control of soil-transmitted helminths? PLoS Neglect Trop D. 2013;7(2):e2027.CrossRef Anderson RM, Truscott JE, Pullan RL, Brooker SJ, Hollingsworth TD. How effective is school-based deworming for the community-wide control of soil-transmitted helminths? PLoS Neglect Trop D. 2013;7(2):e2027.CrossRef
2.
go back to reference French MD, Churcher TS, Webster JP, Fleming FM, Fenwick A, Kabatereine NB, Sacko M, Garba A, Toure S, Nyandindi U, et al. Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with schistosomiasis control initiative-assisted programmes. Parasit Vectors. 2015;8:558.CrossRefPubMedPubMedCentral French MD, Churcher TS, Webster JP, Fleming FM, Fenwick A, Kabatereine NB, Sacko M, Garba A, Toure S, Nyandindi U, et al. Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with schistosomiasis control initiative-assisted programmes. Parasit Vectors. 2015;8:558.CrossRefPubMedPubMedCentral
3.
go back to reference Gurarie D, Yoon N, Li E, Ndeffo-Mbah M, Durham D, Phillips AE, Aurelio HO, Ferro J, Galvani AP, King CH. Modelling control of Schistosoma haematobium infection: predictions of the long-term impact of mass drug administration in Africa. Parasit Vectors. 2015;8:529.CrossRefPubMedPubMedCentral Gurarie D, Yoon N, Li E, Ndeffo-Mbah M, Durham D, Phillips AE, Aurelio HO, Ferro J, Galvani AP, King CH. Modelling control of Schistosoma haematobium infection: predictions of the long-term impact of mass drug administration in Africa. Parasit Vectors. 2015;8:529.CrossRefPubMedPubMedCentral
4.
go back to reference Kastner RJ, Stone CM, Steinmann P, Tanner M, Tediosi F. What is needed to eradicate lymphatic filariasis? A model-based assessment on the impact of scaling up mass drug administration programs. PLoS Neglect Trop D. 2015;9(10):e0004147.CrossRef Kastner RJ, Stone CM, Steinmann P, Tanner M, Tediosi F. What is needed to eradicate lymphatic filariasis? A model-based assessment on the impact of scaling up mass drug administration programs. PLoS Neglect Trop D. 2015;9(10):e0004147.CrossRef
5.
go back to reference Kim YE, Remme JHF, Steinmann P, Stolk WA, Roungou JB, Tediosi F. Control, elimination, and eradication of river blindness: scenarios, timelines, and ivermectin treatment needs in Africa. PLoS Neglect Trop D. 2015;9(5):e0003664.CrossRef Kim YE, Remme JHF, Steinmann P, Stolk WA, Roungou JB, Tediosi F. Control, elimination, and eradication of river blindness: scenarios, timelines, and ivermectin treatment needs in Africa. PLoS Neglect Trop D. 2015;9(5):e0003664.CrossRef
6.
go back to reference World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases — a roadmap for implementation. Geneva: World Health Organization; 2012. p. 42. World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases — a roadmap for implementation. Geneva: World Health Organization; 2012. p. 42.
7.
go back to reference Marathe M, Vullikanti AKS. Computational epidemiology. Commun ACM. 2013;56(7):88–96.CrossRef Marathe M, Vullikanti AKS. Computational epidemiology. Commun ACM. 2013;56(7):88–96.CrossRef
9.
go back to reference Moulin B, Navarro D, Marcotte D, Sedrati S, Bouden M. ZoonosisMAGS Project (Part 2): complementarity of a rapid-prototyping tool and of a full-scale geosimulator for population-based geosimulation of zoonoses. In: Chen D, Moulin B, Wu J, editors. Analyzing and modelling spatial and temporal dynamics of infectious diseases. Hoboken: Wiley; 2015. p. 341–70. Moulin B, Navarro D, Marcotte D, Sedrati S, Bouden M. ZoonosisMAGS Project (Part 2): complementarity of a rapid-prototyping tool and of a full-scale geosimulator for population-based geosimulation of zoonoses. In: Chen D, Moulin B, Wu J, editors. Analyzing and modelling spatial and temporal dynamics of infectious diseases. Hoboken: Wiley; 2015. p. 341–70.
10.
go back to reference O’Hare A, Lycett SJ, Doherty T, Salvador LCM, Kao RR. Broadwick: a framework for computational epidemiology. BMC Bioinfor. 2016;17:65.CrossRef O’Hare A, Lycett SJ, Doherty T, Salvador LCM, Kao RR. Broadwick: a framework for computational epidemiology. BMC Bioinfor. 2016;17:65.CrossRef
11.
go back to reference Parker J, Epstein JM. A distributed platform for Global-Scale Agent-Based Models of disease transmission. ACM T Model Comput S. 2011;22(1):2. Parker J, Epstein JM. A distributed platform for Global-Scale Agent-Based Models of disease transmission. ACM T Model Comput S. 2011;22(1):2.
12.
go back to reference Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar A, Kazura JW. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis. 2004;4(4):223–34.CrossRefPubMed Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar A, Kazura JW. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis. 2004;4(4):223–34.CrossRefPubMed
13.
go back to reference Beven K. Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process. Hydrol Earth Syst Sc. 2007;11(1):460–7.CrossRef Beven K. Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process. Hydrol Earth Syst Sc. 2007;11(1):460–7.CrossRef
14.
go back to reference Beven KJ. Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sc. 2000;4(2):203–13.CrossRef Beven KJ. Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sc. 2000;4(2):203–13.CrossRef
15.
go back to reference Van Oijen M, Thomson A, Ewert F. Spatial upscaling of process-based vegetation models: an overview of common methods and a case-study for the U.K. StatGIS2009. Milos, Greece; 2009: 6 pp. Van Oijen M, Thomson A, Ewert F. Spatial upscaling of process-based vegetation models: an overview of common methods and a case-study for the U.K. StatGIS2009. Milos, Greece; 2009: 6 pp.
16.
go back to reference Constanza R, Voinov A. Introduction: spatially explicit landscape simulation models. In: Constanza R, Voinov A, editors. Landscape simulation modeling: a spatially explicit, dynamic approach. New York: Springer-Verlag; 2004. p. 3–20.CrossRef Constanza R, Voinov A. Introduction: spatially explicit landscape simulation models. In: Constanza R, Voinov A, editors. Landscape simulation modeling: a spatially explicit, dynamic approach. New York: Springer-Verlag; 2004. p. 3–20.CrossRef
17.
go back to reference Cushman SA. Space and time in ecology: noise or fundamental driver? In: Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. New York: Springer; 2010. p. 19–41.CrossRef Cushman SA. Space and time in ecology: noise or fundamental driver? In: Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. New York: Springer; 2010. p. 19–41.CrossRef
18.
go back to reference Cushman SA, Littell J, McGarigal K. The problem of ecological scaling in spatially complex, nonequilibrium ecological systems. In: Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. New York: Springer; 2010. p. 43–63.CrossRef Cushman SA, Littell J, McGarigal K. The problem of ecological scaling in spatially complex, nonequilibrium ecological systems. In: Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. New York: Springer; 2010. p. 43–63.CrossRef
19.
go back to reference Bevan K. Environmental modelling: an uncertain future? Abingdon: Routledge; 2009. Bevan K. Environmental modelling: an uncertain future? Abingdon: Routledge; 2009.
20.
go back to reference Gambhir M, Bockarie M, Tisch D, Kazura J, Remais J, Spear R, Michael E. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 2010;8:22.CrossRefPubMedPubMedCentral Gambhir M, Bockarie M, Tisch D, Kazura J, Remais J, Spear R, Michael E. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 2010;8:22.CrossRefPubMedPubMedCentral
21.
go back to reference Michael E, Singh BK. Heterogeneous dynamics, robustness/fragility trade-offs, and the eradication of the macroparasitic disease, lymphatic filariasis. BMC Med. 2016;14(1):1.CrossRef Michael E, Singh BK. Heterogeneous dynamics, robustness/fragility trade-offs, and the eradication of the macroparasitic disease, lymphatic filariasis. BMC Med. 2016;14(1):1.CrossRef
22.
go back to reference Singh BK, Michael E. Bayesian calibration of simulation models for supporting management of the elimination of the macroparasitic disease, lymphatic filariasis. Parasit Vectors. 2015;8(1):1–26.CrossRef Singh BK, Michael E. Bayesian calibration of simulation models for supporting management of the elimination of the macroparasitic disease, lymphatic filariasis. Parasit Vectors. 2015;8(1):1–26.CrossRef
23.
go back to reference Eckhoff PA, Tatem AJ. Digital methods in epidemiology can transform disease control. Intl Hlth. 2015;7(2):77–8. Eckhoff PA, Tatem AJ. Digital methods in epidemiology can transform disease control. Intl Hlth. 2015;7(2):77–8.
24.
25.
go back to reference Kalluri S, Gilruth P, Rogers D, Szczur M. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog. 2007;3(10):1361–71.CrossRefPubMed Kalluri S, Gilruth P, Rogers D, Szczur M. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog. 2007;3(10):1361–71.CrossRefPubMed
26.
go back to reference Tatem AJ, Adamo S, Bharti N, Burgert CR, Castro M, Dorelien A, Fink G, Linard C, John M, Montana L, et al. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation. Popul Hlth Metrics. 2012;10(1):8.CrossRef Tatem AJ, Adamo S, Bharti N, Burgert CR, Castro M, Dorelien A, Fink G, Linard C, John M, Montana L, et al. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation. Popul Hlth Metrics. 2012;10(1):8.CrossRef
27.
go back to reference Ames DP, Horsburgh JS, Cao Y, Kadlec J, Whiteaker T, Valentine D. HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis. Environ Model Softw. 2012;37:146–56.CrossRef Ames DP, Horsburgh JS, Cao Y, Kadlec J, Whiteaker T, Valentine D. HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis. Environ Model Softw. 2012;37:146–56.CrossRef
28.
go back to reference Beven KJ, Alcock RE. Modelling everything everywhere: a new approach to decision-making for water management under uncertainty. Freshwater Biol. 2012;57:124–32.CrossRef Beven KJ, Alcock RE. Modelling everything everywhere: a new approach to decision-making for water management under uncertainty. Freshwater Biol. 2012;57:124–32.CrossRef
29.
go back to reference Billah MM, Goodall JL, Narayan U, Essawy BT, Lakshmi V, Rajasekar A, Moore RW. Using a data grid to automate data preparation pipelines required for regional-scale hydrologic modeling. Environ Model Softw. 2016;78:31–9.CrossRef Billah MM, Goodall JL, Narayan U, Essawy BT, Lakshmi V, Rajasekar A, Moore RW. Using a data grid to automate data preparation pipelines required for regional-scale hydrologic modeling. Environ Model Softw. 2016;78:31–9.CrossRef
30.
go back to reference Essawy BT, Goodall JL, Xu H, Rajasekar A, Myers JD, Kugler TA, Billah MM, Whitton MC, Moore RW. Server-side workflow execution using data grid technology for reproducible analyses of data-intensive hydrologic systems. Earth Space Sci. 2016;3(4):163–75.CrossRef Essawy BT, Goodall JL, Xu H, Rajasekar A, Myers JD, Kugler TA, Billah MM, Whitton MC, Moore RW. Server-side workflow execution using data grid technology for reproducible analyses of data-intensive hydrologic systems. Earth Space Sci. 2016;3(4):163–75.CrossRef
31.
go back to reference Liu Y, Hu JM, Snell-Feikema I, VanBemmel MS, Lamsal A, Wimberly MC. Software to facilitate remote sensing data access for disease early warning systems. Environ Model Softw. 2015;74:247–57.CrossRefPubMedPubMedCentral Liu Y, Hu JM, Snell-Feikema I, VanBemmel MS, Lamsal A, Wimberly MC. Software to facilitate remote sensing data access for disease early warning systems. Environ Model Softw. 2015;74:247–57.CrossRefPubMedPubMedCentral
32.
go back to reference Dowd M. Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo. J Mar Syst. 2007;68(3-4):439–56.CrossRef Dowd M. Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo. J Mar Syst. 2007;68(3-4):439–56.CrossRef
33.
go back to reference Finley AO, Banerjee S, Basso B. Improving crop model inference through Bayesian melding with spatially varying parameters. J Agr Biol Envir St. 2011;16(4):453–74.CrossRef Finley AO, Banerjee S, Basso B. Improving crop model inference through Bayesian melding with spatially varying parameters. J Agr Biol Envir St. 2011;16(4):453–74.CrossRef
34.
go back to reference LaDeau SL, Glass GE, Hobbs NT, Latimer A, Ostfeld RS. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting. Ecol Appl. 2011;21(5):1443–60.CrossRefPubMed LaDeau SL, Glass GE, Hobbs NT, Latimer A, Ostfeld RS. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting. Ecol Appl. 2011;21(5):1443–60.CrossRefPubMed
35.
go back to reference Luo YQ, Ogle K, Tucker C, Fei SF, Gao C, LaDeau S, Clark JS, Schimel DS. Ecological forecasting and data assimilation in a data-rich era. Ecol Appl. 2011;21(5):1429–42.CrossRefPubMed Luo YQ, Ogle K, Tucker C, Fei SF, Gao C, LaDeau S, Clark JS, Schimel DS. Ecological forecasting and data assimilation in a data-rich era. Ecol Appl. 2011;21(5):1429–42.CrossRefPubMed
37.
go back to reference Todorovski L, Dzeroski S. Integrating knowledge-driven and data-driven approaches to modeling. Ecol Model. 2006;194(1-3):3–13.CrossRef Todorovski L, Dzeroski S. Integrating knowledge-driven and data-driven approaches to modeling. Ecol Model. 2006;194(1-3):3–13.CrossRef
38.
go back to reference Villaverde AF, Banga JR. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11(91):20130505.CrossRefPubMedPubMedCentral Villaverde AF, Banga JR. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11(91):20130505.CrossRefPubMedPubMedCentral
39.
go back to reference Bates SC, Cullen A, Raftery AE. Bayesian uncertainty assessment in multicompartment deterministic simulation models for environmental risk assessment. Environmetrics. 2003;14(4):355–71.CrossRef Bates SC, Cullen A, Raftery AE. Bayesian uncertainty assessment in multicompartment deterministic simulation models for environmental risk assessment. Environmetrics. 2003;14(4):355–71.CrossRef
40.
go back to reference Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc. 2000;95(452):1244–55.CrossRef Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc. 2000;95(452):1244–55.CrossRef
41.
go back to reference Spear RC, Hubbard A, Liang S, Seto E. Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Persp. 2002;110(9):907–15.CrossRef Spear RC, Hubbard A, Liang S, Seto E. Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Persp. 2002;110(9):907–15.CrossRef
42.
go back to reference Simidjievski N, Todorovski L, Dzeroski S. Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems. Ecol Model. 2015;306:305–17.CrossRef Simidjievski N, Todorovski L, Dzeroski S. Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems. Ecol Model. 2015;306:305–17.CrossRef
43.
44.
go back to reference Slater H, Michael E. Mapping, Bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa. PLoS One. 2013;8(8):e71574.CrossRefPubMedPubMedCentral Slater H, Michael E. Mapping, Bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa. PLoS One. 2013;8(8):e71574.CrossRefPubMedPubMedCentral
45.
go back to reference Michael E, Bundy DAP, Grenfell BT. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology. 1996;112(04):409–28.CrossRefPubMed Michael E, Bundy DAP, Grenfell BT. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology. 1996;112(04):409–28.CrossRefPubMed
47.
go back to reference Remme JHF. Research for control: the onchocerciasis experience. Trop Med Inter Health. 2004;9(2):243–54.CrossRef Remme JHF. Research for control: the onchocerciasis experience. Trop Med Inter Health. 2004;9(2):243–54.CrossRef
48.
go back to reference Koroma JB, Sesay S, Sonnie M, Hodges MH, Sahr F, Zhang Y, Bockarie MJ. Impact of three rounds of mass drug administration on lymphatic filariasis in areas previously treated for onchocerciasis in Sierra Leone. PLoS Negl Trop D. 2013;7(6):e2273.CrossRef Koroma JB, Sesay S, Sonnie M, Hodges MH, Sahr F, Zhang Y, Bockarie MJ. Impact of three rounds of mass drug administration on lymphatic filariasis in areas previously treated for onchocerciasis in Sierra Leone. PLoS Negl Trop D. 2013;7(6):e2273.CrossRef
49.
go back to reference World Health O. Lymphatic filariasis: a handbook of practical entomology for national lymphatic filariasis elimination programmes. WHO/HTM/NTD/PCT/2013.10; 2013:1–107. World Health O. Lymphatic filariasis: a handbook of practical entomology for national lymphatic filariasis elimination programmes. WHO/HTM/NTD/PCT/2013.10; 2013:1–107.
50.
go back to reference Singh BK, Bockarie MJ, Gambhir M, Siba PM, Tisch DJ, Kazura J, et al. Sequential modelling of the effects of mass drug treatments on anopheline-mediated lymphatic filariasis infection in Papua New Guinea. PLoS One. 2013;8(6):e67004.CrossRefPubMedPubMedCentral Singh BK, Bockarie MJ, Gambhir M, Siba PM, Tisch DJ, Kazura J, et al. Sequential modelling of the effects of mass drug treatments on anopheline-mediated lymphatic filariasis infection in Papua New Guinea. PLoS One. 2013;8(6):e67004.CrossRefPubMedPubMedCentral
51.
go back to reference Smith ME, Singh BK, Irvine MA, Stolk WA, Subramanian S, Hollingsworth TD, Michael E. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework. Epidemics. 2017;18:16–28.CrossRefPubMedPubMedCentral Smith ME, Singh BK, Irvine MA, Stolk WA, Subramanian S, Hollingsworth TD, Michael E. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework. Epidemics. 2017;18:16–28.CrossRefPubMedPubMedCentral
52.
go back to reference Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea ME, Dagoro H, Susapu M, Hetzel MW, Bockarie MJ, et al. Insecticidal bed nets and filariasis transmission in Papua New Guinea. New Engl J Med. 2013;369(8):745–53.CrossRefPubMed Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea ME, Dagoro H, Susapu M, Hetzel MW, Bockarie MJ, et al. Insecticidal bed nets and filariasis transmission in Papua New Guinea. New Engl J Med. 2013;369(8):745–53.CrossRefPubMed
53.
go back to reference Gambhir M, Michael E. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS One. 2008;3(8):e2874.CrossRefPubMedPubMedCentral Gambhir M, Michael E. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS One. 2008;3(8):e2874.CrossRefPubMedPubMedCentral
54.
go back to reference Thomsen EK, Sanuku N, Baea M, Satofan S, Maki E, Lombore B, Schmidt MS, Siba PM, Weil GJ, Kazura JW, et al. Efficacy, safety, and pharmacokinetics of coadministered diethylcarbamazine, albendazole, and ivermectin for treatment of Bancroftian filariasis. Clin Infect Dis. 2016;62(3):334–41.CrossRefPubMed Thomsen EK, Sanuku N, Baea M, Satofan S, Maki E, Lombore B, Schmidt MS, Siba PM, Weil GJ, Kazura JW, et al. Efficacy, safety, and pharmacokinetics of coadministered diethylcarbamazine, albendazole, and ivermectin for treatment of Bancroftian filariasis. Clin Infect Dis. 2016;62(3):334–41.CrossRefPubMed
55.
go back to reference King AW. Translating models across scales in the landscape. In: Turner MG, Gardner RH, editors. Quantitative methods in landscape ecology, ecological studies, vol. 82. New York: Springer; 1991. p. 479–517.CrossRef King AW. Translating models across scales in the landscape. In: Turner MG, Gardner RH, editors. Quantitative methods in landscape ecology, ecological studies, vol. 82. New York: Springer; 1991. p. 479–517.CrossRef
56.
go back to reference Rastetter EB, King AW, Cosby BJ, Hornberger GM, Oneill RV, Hobbie JE. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecol Appl. 1992;2(1):55–70.CrossRefPubMed Rastetter EB, King AW, Cosby BJ, Hornberger GM, Oneill RV, Hobbie JE. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecol Appl. 1992;2(1):55–70.CrossRefPubMed
57.
go back to reference Schneider DC. Quantitative ecology: spatial and temporal scaling. San Diego: Academic; 1994. Schneider DC. Quantitative ecology: spatial and temporal scaling. San Diego: Academic; 1994.
58.
go back to reference Villa F, Voinov A, Fitz C, Costanza R. Calibration of large spatial models: a multistage, multiobjective optimization technique. In: Costanza R, Vionov A, editors. Landscape simulation modeling: a spatially explicit, dynamic approach. New York: Springer; 2004. p. 77–116.CrossRef Villa F, Voinov A, Fitz C, Costanza R. Calibration of large spatial models: a multistage, multiobjective optimization technique. In: Costanza R, Vionov A, editors. Landscape simulation modeling: a spatially explicit, dynamic approach. New York: Springer; 2004. p. 77–116.CrossRef
59.
go back to reference Levin SA. The problem of pattern and scale in ecology. Ecology. 1992;73(6):1943–67.CrossRef Levin SA. The problem of pattern and scale in ecology. Ecology. 1992;73(6):1943–67.CrossRef
60.
61.
go back to reference Michael E, Simonsen PE, Malecela M, Jaoko WG, Pedersen EM, Mukoko D, Rwegoshora RT, Meyrowitsch DW. Transmission intensity and the immunoepidemiology of bancroftian filariasis in East Africa. Parasit Immunol. 2001;23(7):373–88.CrossRef Michael E, Simonsen PE, Malecela M, Jaoko WG, Pedersen EM, Mukoko D, Rwegoshora RT, Meyrowitsch DW. Transmission intensity and the immunoepidemiology of bancroftian filariasis in East Africa. Parasit Immunol. 2001;23(7):373–88.CrossRef
62.
go back to reference Spear RC. Internal versus external determinants of Schistosoma japonicum transmission in irrigated agricultural villages. J R Soc Interface. 2012;9(67):272–82.CrossRefPubMed Spear RC. Internal versus external determinants of Schistosoma japonicum transmission in irrigated agricultural villages. J R Soc Interface. 2012;9(67):272–82.CrossRefPubMed
63.
go back to reference Chesson PL. Models for spatially distributed populations — the effect of within-patch variability. Theor Popul Biol. 1981;19(3):288–325.CrossRef Chesson PL. Models for spatially distributed populations — the effect of within-patch variability. Theor Popul Biol. 1981;19(3):288–325.CrossRef
64.
go back to reference Michael E, Gambhir M. Transmission models and management of lymphatic filariasis elimination. Adv Exper Med Biol. 2010;673:157–71.CrossRef Michael E, Gambhir M. Transmission models and management of lymphatic filariasis elimination. Adv Exper Med Biol. 2010;673:157–71.CrossRef
65.
go back to reference Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol. 2006;22(5):226–33.CrossRefPubMed Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol. 2006;22(5):226–33.CrossRefPubMed
66.
go back to reference Irvine MA, Stolk WA, Smith ME, Subramanian S, Singh BK, Weil GJ, Michael E, Hollingsworth TD. Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis: a modelling study. Lancet Infect Dis. 2017;17(4):451–8.CrossRefPubMed Irvine MA, Stolk WA, Smith ME, Subramanian S, Singh BK, Weil GJ, Michael E, Hollingsworth TD. Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis: a modelling study. Lancet Infect Dis. 2017;17(4):451–8.CrossRefPubMed
67.
go back to reference Ichimori K, King JD, Engels D, Yajima A, Mikhailov A, Lammie P, Ottesen EA. Global programme to eliminate lymphatic filariasis: the processes underlying programme success. PLoS Negl Trop Dis. 2014;8(12):e3328.CrossRefPubMedPubMedCentral Ichimori K, King JD, Engels D, Yajima A, Mikhailov A, Lammie P, Ottesen EA. Global programme to eliminate lymphatic filariasis: the processes underlying programme success. PLoS Negl Trop Dis. 2014;8(12):e3328.CrossRefPubMedPubMedCentral
68.
go back to reference Chan MS, Srividya A, Norman RA, Pani SP, Ramaiah KD, Vanamail P, Michael E, Das PK, Bundy DA. Epifil: a dynamic model of infection and disease in lymphatic filariasis. Am J Trop Med Hyg. 1998;59(4):606–14.CrossRefPubMed Chan MS, Srividya A, Norman RA, Pani SP, Ramaiah KD, Vanamail P, Michael E, Das PK, Bundy DA. Epifil: a dynamic model of infection and disease in lymphatic filariasis. Am J Trop Med Hyg. 1998;59(4):606–14.CrossRefPubMed
69.
go back to reference Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, Vanamail P, Michael E, Das PK, Bundy DA. EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect. 2000;124(3):529–41.CrossRefPubMedPubMedCentral Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, Vanamail P, Michael E, Das PK, Bundy DA. EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect. 2000;124(3):529–41.CrossRefPubMedPubMedCentral
70.
go back to reference Srividya A, Michael E, Palaniyandi M, Pani SP, Das PK. A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. Am J Trop Med Hyg. 2002;67(5):480–9.CrossRefPubMed Srividya A, Michael E, Palaniyandi M, Pani SP, Das PK. A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. Am J Trop Med Hyg. 2002;67(5):480–9.CrossRefPubMed
71.
go back to reference Grimm V, Frank K, Jeltsch F, Brandl R, Uchmanski J, Wissel C. Pattern-oriented modelling in population ecology. Sci Total Environ. 1996;183(1-2):151–66.CrossRef Grimm V, Frank K, Jeltsch F, Brandl R, Uchmanski J, Wissel C. Pattern-oriented modelling in population ecology. Sci Total Environ. 1996;183(1-2):151–66.CrossRef
72.
go back to reference Corchado E, Lozano JA, Quintian H, Yin H, editors. Intelligent Data Engineering and Automated Learning — IDEAL 2014 Proceedings. Salamanca: Springer; 2014. Corchado E, Lozano JA, Quintian H, Yin H, editors. Intelligent Data Engineering and Automated Learning — IDEAL 2014 Proceedings. Salamanca: Springer; 2014.
Metadata
Title
Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020
Authors
Edwin Michael
Brajendra K. Singh
Benjamin K. Mayala
Morgan E. Smith
Scott Hampton
Jaroslaw Nabrzyski
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2017
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-017-0933-2

Other articles of this Issue 1/2017

BMC Medicine 1/2017 Go to the issue