Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2008

01-05-2008 | lab. Investigation-human/animal tissue

Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas

Authors: Jian Yi Li, Hua Wang, Stephen May, Xianzhou Song, Juan Fueyo, Gregory N. Fuller, Huamin Wang

Published in: Journal of Neuro-Oncology | Issue 1/2008

Login to get access

Abstract

The c-Jun NH2–terminal kinase (JNK), which belongs to mitogen-activated protein kinase family, plays a major role in apoptosis in various cell types. JNK activation, however, also contributes to proliferation, survival, and tumorigenesis in some tumors, including gliomas. In this study, we used an immunohistochemical approach to examine the activation status of JNK of 226 gliomas in a high-density tissue microarray comprising all WHO codified WHO diffuse glioma subtypes and grades. The results were correlated with grade and EGFR expression status. Constitutively activated JNK (pJNK) was detected in 90.5%, 62.9% and 17.5% of WHO grade IV, III and II gliomas, respectively (p < 0.001). pJNK expression was not detected in the astrocytes or oligodendrocytes of any of 10 normal cerebral and cerebellar brain tissue samples. Among the 76 diffuse gliomas that exhibited EGFR expression, 63 (82.9%) were positive for pJNK. In contrast, only 50% (36/72) of the gliomas that were negative for EGFR were positive for pJNK (p < 0.0001). Overexpression of EGFR vIII in U87 cells or EGF treatment of U87-EGFR stable cells led to marked increase in JNK activation compared to parental U87 cells. Our data thus provide strong support for the hypothesis that JNK activation plays a role in the tumorigenesis and/or progression of diffuse gliomas, and suggests that EGFR is involved in constitutive JNK activation in diffuse gliomas. The ability to inhibit JNK activation might confer increased sensitivity to therapeutic modalities targeting this pathway.
Literature
1.
go back to reference Cavenee WK, Furnari FB, Nagane M et al (2000) Diffusely infiltrating astrocytomas. In: Keilhues PCW (ed) Pathology & genetics: tumors of the nervous system. IARC Press, Lyon, pp 9–51 Cavenee WK, Furnari FB, Nagane M et al (2000) Diffusely infiltrating astrocytomas. In: Keilhues PCW (ed) Pathology & genetics: tumors of the nervous system. IARC Press, Lyon, pp 9–51
2.
go back to reference Burger PC, Vogel FS, Green SB et al (1985) Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 56:1106–1111PubMedCrossRef Burger PC, Vogel FS, Green SB et al (1985) Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 56:1106–1111PubMedCrossRef
3.
go back to reference Daumas-Duport C, Scheithauer B, O’Fallon J et al (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165PubMedCrossRef Daumas-Duport C, Scheithauer B, O’Fallon J et al (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165PubMedCrossRef
4.
go back to reference Kim TS, Halliday AL, Hedley-Whyte ET et al (1991) Correlates of survival and the Daumas-Duport grading system for astrocytomas. J Neurosurg 74:27–37PubMedCrossRef Kim TS, Halliday AL, Hedley-Whyte ET et al (1991) Correlates of survival and the Daumas-Duport grading system for astrocytomas. J Neurosurg 74:27–37PubMedCrossRef
5.
go back to reference Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489PubMed Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489PubMed
6.
go back to reference Wang SI, Puc J, Li J et al (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57:4183–4186PubMed Wang SI, Puc J, Li J et al (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57:4183–4186PubMed
7.
go back to reference Tohma Y, Gratas C, Biernat W et al (1998) PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57:684–689PubMed Tohma Y, Gratas C, Biernat W et al (1998) PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57:684–689PubMed
8.
go back to reference Teng DH, Hu R, Lin H et al (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57:5221–5225PubMed Teng DH, Hu R, Lin H et al (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57:5221–5225PubMed
9.
go back to reference Steck PA, Lin H, Langford LA et al (1999) Functional and molecular analyses of 10q deletions in human gliomas. Genes Chromosomes Cancer 24:135–143PubMedCrossRef Steck PA, Lin H, Langford LA et al (1999) Functional and molecular analyses of 10q deletions in human gliomas. Genes Chromosomes Cancer 24:135–143PubMedCrossRef
11.
go back to reference Antonyak MA, Kenyon LC, Godwin AK et al (2002) Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene 21:5038–5046PubMedCrossRef Antonyak MA, Kenyon LC, Godwin AK et al (2002) Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene 21:5038–5046PubMedCrossRef
12.
go back to reference Cui J, Han SY, Wang C et al (2006) c-Jun NH(2)-terminal kinase 2alpha2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res 66:10024–10031PubMedCrossRef Cui J, Han SY, Wang C et al (2006) c-Jun NH(2)-terminal kinase 2alpha2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res 66:10024–10031PubMedCrossRef
13.
go back to reference Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2:199–201PubMed Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2:199–201PubMed
14.
go back to reference Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607PubMedCrossRef Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607PubMedCrossRef
15.
go back to reference Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847PubMedCrossRef Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847PubMedCrossRef
16.
go back to reference Wang H, Wang H, Zhang W et al (2002) Tissue microarrays: applications in neuropathology research, diagnosis, and education. Brain Pathol 12:95–107PubMedCrossRef Wang H, Wang H, Zhang W et al (2002) Tissue microarrays: applications in neuropathology research, diagnosis, and education. Brain Pathol 12:95–107PubMedCrossRef
17.
go back to reference Wang H, Wang H, Zhang W et al (2004) Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951PubMedCrossRef Wang H, Wang H, Zhang W et al (2004) Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951PubMedCrossRef
18.
go back to reference Tsuiki H, Tnani M, Okamoto I et al (2003) Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res 63:250–255PubMed Tsuiki H, Tnani M, Okamoto I et al (2003) Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res 63:250–255PubMed
19.
go back to reference Butterfield L, Storey B, Maas L et al (1997) c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem 272:10110–10116PubMedCrossRef Butterfield L, Storey B, Maas L et al (1997) c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem 272:10110–10116PubMedCrossRef
20.
go back to reference Garay M, Gaarde W, Monia BP et al (2000) Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells. Biochem Pharmacol 59:1033–1043PubMedCrossRef Garay M, Gaarde W, Monia BP et al (2000) Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells. Biochem Pharmacol 59:1033–1043PubMedCrossRef
21.
go back to reference Hreniuk D, Garay M, Gaarde W et al (2001) Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol 59:867–874PubMed Hreniuk D, Garay M, Gaarde W et al (2001) Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol 59:867–874PubMed
22.
go back to reference Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)–from inflammation to development. Curr Opin Cell Biol 10:205–219PubMedCrossRef Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)–from inflammation to development. Curr Opin Cell Biol 10:205–219PubMedCrossRef
23.
go back to reference Kapoor GS, O’Rourke DM (2003) Mitogenic signaling cascades in glial tumors. Neurosurgery 52:1425–1434PubMedCrossRef Kapoor GS, O’Rourke DM (2003) Mitogenic signaling cascades in glial tumors. Neurosurgery 52:1425–1434PubMedCrossRef
24.
go back to reference Preusser M, Haberler C, Hainfellner JA (2006) Malignant glioma: neuropathology and neurobiology. Wien Med Wochenschr 156:332–337PubMedCrossRef Preusser M, Haberler C, Hainfellner JA (2006) Malignant glioma: neuropathology and neurobiology. Wien Med Wochenschr 156:332–337PubMedCrossRef
25.
go back to reference Antonyak MA, Moscatello DK, Wong AJ (1998) Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor. J Biol Chem 273:2817–2822PubMedCrossRef Antonyak MA, Moscatello DK, Wong AJ (1998) Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor. J Biol Chem 273:2817–2822PubMedCrossRef
Metadata
Title
Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas
Authors
Jian Yi Li
Hua Wang
Stephen May
Xianzhou Song
Juan Fueyo
Gregory N. Fuller
Huamin Wang
Publication date
01-05-2008
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2008
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-008-9529-1

Other articles of this Issue 1/2008

Journal of Neuro-Oncology 1/2008 Go to the issue

lab. investigation-human/Animal Tissue

Expression of TLR9 within human glioblastoma