Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Consistent gene expression profiles in MexTAg transgenic mouse and wild type mouse asbestos-induced mesothelioma

Authors: Cleo Robinson, Ian M. Dick, Michael J. Wise, Andrew Holloway, Dileepa Diyagama, Bruce W. S. Robinson, Jenette Creaney, Richard A. Lake

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

The MexTAg transgenic mouse model of mesothelioma replicates many aspects of human mesothelioma, including induction by asbestos, pathogenicity and response to cytotoxic chemotherapy, despite high levels of the SV40 large T Antigen (TAg) in the mesothelial compartment. This model enables analysis of the molecular events associated with asbestos induced mesothelioma and is utilised here to investigate the molecular dynamics of tumours induced in these mice, using gene expression patterns as a read out.

Methods

Gene expression of MexTAg mesothelioma cell lines bearing a high or low number of copies of the TAg transgene were compared to wild type mouse mesotheliomas and normal mouse mesothelial cells using Affymetrix microarray. These data were then compared to a similar published human microarray study using the same platform.

Results

The main expression differences between transgenic mouse and wild type mouse mesotheliomas occurred for genes involved in cell cycle regulation and DNA replication, as would be expected from overexpression of the TAg oncogene. Quantitative PCR confirmed that E2F and E2F regulated genes were significantly more upregulated in MexTAg mesotheliomas and MexTAg mesothelial cells compared to wild type mesotheliomas. Like human mesothelioma, both MexTAg and wild type mesotheliomas had more genes underexpressed than overexpressed compared to normal mouse mesothelial cells. Most notably, the cdkn2 locus was deleted in the wild type mouse mesotheliomas, consistent with 80 % human mesotheliomas, however, this region was not deleted in MexTAg mesotheliomas. Regardless of the presence of TAg, all mouse mesotheliomas had a highly concordant set of deregulated genes compared to normal mesothelial cells that overlapped with the deregulated genes between human mesotheliomas and mesothelial cells.

Conclusions

This investigation demonstrates that the MexTAg mesotheliomas are comparable with wild type mouse mesotheliomas in their representation of human mesothelioma at the molecular level, with some key gene expression differences that are attributable to the TAg transgene expression. Of particular note, MexTAg mesothelioma development was not dependent on cdkn2 deletion.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Olsen NJ, Franklin PJ, Reid A, de Klerk NH, Threlfall TJ, Shilkin K, et al. Increasing incidence of malignant mesothelioma after exposure to asbestos during home maintenance and renovation. Med J Aust. 2011;195(5):271–4.PubMedCrossRef Olsen NJ, Franklin PJ, Reid A, de Klerk NH, Threlfall TJ, Shilkin K, et al. Increasing incidence of malignant mesothelioma after exposure to asbestos during home maintenance and renovation. Med J Aust. 2011;195(5):271–4.PubMedCrossRef
3.
go back to reference Le GV, Takahashi K, Park EK, Delgermaa V, Oak C, Qureshi AM, et al. Asbestos use and asbestos-related diseases in Asia: past, present and future. Respirology. 2011;16(5):767–75.PubMedCrossRef Le GV, Takahashi K, Park EK, Delgermaa V, Oak C, Qureshi AM, et al. Asbestos use and asbestos-related diseases in Asia: past, present and future. Respirology. 2011;16(5):767–75.PubMedCrossRef
4.
go back to reference Davis MR, Manning LS, Whitaker D, Garlepp MJ, Robinson BW. Establishment of a murine model of malignant mesothelioma. Int J Cancer. 1992;52(6):881–6.PubMedCrossRef Davis MR, Manning LS, Whitaker D, Garlepp MJ, Robinson BW. Establishment of a murine model of malignant mesothelioma. Int J Cancer. 1992;52(6):881–6.PubMedCrossRef
5.
go back to reference McCoy MJ, Nowak AK, Lake RA. Chemoimmunotherapy: an emerging strategy for the treatment of malignant mesothelioma. Tissue Antigens. 2009;74(1):1–10.PubMedCrossRef McCoy MJ, Nowak AK, Lake RA. Chemoimmunotherapy: an emerging strategy for the treatment of malignant mesothelioma. Tissue Antigens. 2009;74(1):1–10.PubMedCrossRef
6.
go back to reference Urwin D, Lake RA. Structure of the Mesothelin/MPF gene and characterization of its promoter. Mol Cell Biol Res Commun. 2000;3(1):26–32.PubMedCrossRef Urwin D, Lake RA. Structure of the Mesothelin/MPF gene and characterization of its promoter. Mol Cell Biol Res Commun. 2000;3(1):26–32.PubMedCrossRef
7.
go back to reference Robinson C, van Bruggen I, Segal A, Dunham M, Sherwood A, Koentgen F, et al. A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res. 2006;66(22):10786–94.PubMedCrossRef Robinson C, van Bruggen I, Segal A, Dunham M, Sherwood A, Koentgen F, et al. A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res. 2006;66(22):10786–94.PubMedCrossRef
8.
go back to reference Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–72.PubMedCentralPubMedCrossRef Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–72.PubMedCentralPubMedCrossRef
9.
go back to reference de Assis LV, Locatelli J, Isoldi MC. The role of key genes and pathways involved in the tumorigenesis of Malignant Mesothelioma. Biochim Biophys Acta. 2014;1845(2):232–47.PubMed de Assis LV, Locatelli J, Isoldi MC. The role of key genes and pathways involved in the tumorigenesis of Malignant Mesothelioma. Biochim Biophys Acta. 2014;1845(2):232–47.PubMed
10.
go back to reference Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83.PubMedCrossRef Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83.PubMedCrossRef
12.
go back to reference Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 2007;21(18):2258–70.PubMedCrossRef Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev. 2007;21(18):2258–70.PubMedCrossRef
13.
go back to reference Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57(16):3325–30.PubMed Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57(16):3325–30.PubMed
14.
go back to reference Colvin EK, Weir C, Ikin RJ, Hudson AL. SV40 TAg mouse models of cancer. Semin Cell Dev Biol. 2014;27:61–73.PubMedCrossRef Colvin EK, Weir C, Ikin RJ, Hudson AL. SV40 TAg mouse models of cancer. Semin Cell Dev Biol. 2014;27:61–73.PubMedCrossRef
15.
go back to reference De Luca A, Baldi A, Esposito V, Howard CM, Bagella L, Rizzo P, et al. The retinoblastoma gene family pRb/p105, p107, pRb2/p130 and simian virus-40 large T-antigen in human mesotheliomas. Nat Med. 1997;3(8):913–6.PubMedCrossRef De Luca A, Baldi A, Esposito V, Howard CM, Bagella L, Rizzo P, et al. The retinoblastoma gene family pRb/p105, p107, pRb2/p130 and simian virus-40 large T-antigen in human mesotheliomas. Nat Med. 1997;3(8):913–6.PubMedCrossRef
16.
go back to reference Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med. 2010;9(45):145–52.PubMed Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med. 2010;9(45):145–52.PubMed
17.
go back to reference Di Fiore R, D’Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol. 2013;228(8):1676–87.PubMedCrossRef Di Fiore R, D’Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol. 2013;228(8):1676–87.PubMedCrossRef
18.
go back to reference Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–6.PubMedCrossRef Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–6.PubMedCrossRef
19.
go back to reference Robinson C, Solin J, Lee G, Lake R, Lesterhuis W. Mouse models of mesothelioma: strengths, limitaions and clinical translation. Lung Cancer Manage. 2014;3(5):397–410.CrossRef Robinson C, Solin J, Lee G, Lake R, Lesterhuis W. Mouse models of mesothelioma: strengths, limitaions and clinical translation. Lung Cancer Manage. 2014;3(5):397–410.CrossRef
20.
go back to reference Robinson C, Walsh A, Larma I, O’Halloran S, Nowak AK, Lake RA. MexTAg mice exposed to asbestos develop cancer that faithfully replicates key features of the pathogenesis of human mesothelioma. Eur J Cancer. 2011;47(1):151–61.PubMedCrossRef Robinson C, Walsh A, Larma I, O’Halloran S, Nowak AK, Lake RA. MexTAg mice exposed to asbestos develop cancer that faithfully replicates key features of the pathogenesis of human mesothelioma. Eur J Cancer. 2011;47(1):151–61.PubMedCrossRef
21.
go back to reference Team, RDC. A language and environment for statistical computing. Vienna: Team, RDC; 2006. Team, RDC. A language and environment for statistical computing. Vienna: Team, RDC; 2006.
22.
go back to reference Roe OD, Anderssen E, Helge E, Pettersen CH, Olsen KS, Sandeck H, et al. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One. 2009;4(8):e6554.PubMedCentralPubMedCrossRef Roe OD, Anderssen E, Helge E, Pettersen CH, Olsen KS, Sandeck H, et al. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One. 2009;4(8):e6554.PubMedCentralPubMedCrossRef
25.
go back to reference Smyth G, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Limma linear models for microarray data. In: Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420.CrossRef Smyth G, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Limma linear models for microarray data. In: Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420.CrossRef
26.
go back to reference Cleaver AL, Bhamidipaty K, Wylie B, Connor T, Robinson C, Robinson BW, et al. Long-term exposure of mesothelial cells to SV40 and asbestos leads to malignant transformation and chemotherapy resistance. Carcinogenesis. 2014;35(2):407–14.PubMedCrossRef Cleaver AL, Bhamidipaty K, Wylie B, Connor T, Robinson C, Robinson BW, et al. Long-term exposure of mesothelial cells to SV40 and asbestos leads to malignant transformation and chemotherapy resistance. Carcinogenesis. 2014;35(2):407–14.PubMedCrossRef
27.
go back to reference Sekido Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci. 2010;101(1):1–6.PubMedCrossRef Sekido Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci. 2010;101(1):1–6.PubMedCrossRef
28.
29.
go back to reference Andrechek ER, Cardiff RD, Chang JT, Gatza ML, Acharya CR, Potti A, et al. Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential. Proc Natl Acad Sci U S A. 2009;106(38):16387–92.PubMedCentralPubMedCrossRef Andrechek ER, Cardiff RD, Chang JT, Gatza ML, Acharya CR, Potti A, et al. Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential. Proc Natl Acad Sci U S A. 2009;106(38):16387–92.PubMedCentralPubMedCrossRef
30.
go back to reference Wright MH, Robles AI, Herschkowitz JI, Hollingshead MG, Anver MR, Perou CM, et al. Molecular analysis reveals heterogeneity of mouse mammary tumors conditionally mutant for Brca1. Mol Cancer. 2008;7:29.PubMedCentralPubMedCrossRef Wright MH, Robles AI, Herschkowitz JI, Hollingshead MG, Anver MR, Perou CM, et al. Molecular analysis reveals heterogeneity of mouse mammary tumors conditionally mutant for Brca1. Mol Cancer. 2008;7:29.PubMedCentralPubMedCrossRef
31.
go back to reference Glinsky GV, Krones-Herzig A, Glinskii AB, Gebauer G. Microarray analysis of xenograft-derived cancer cell lines representing multiple experimental models of human prostate cancer. Mol Carcinog. 2003;37(4):209–21.PubMedCrossRef Glinsky GV, Krones-Herzig A, Glinskii AB, Gebauer G. Microarray analysis of xenograft-derived cancer cell lines representing multiple experimental models of human prostate cancer. Mol Carcinog. 2003;37(4):209–21.PubMedCrossRef
32.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.PubMedCrossRef Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.PubMedCrossRef
Metadata
Title
Consistent gene expression profiles in MexTAg transgenic mouse and wild type mouse asbestos-induced mesothelioma
Authors
Cleo Robinson
Ian M. Dick
Michael J. Wise
Andrew Holloway
Dileepa Diyagama
Bruce W. S. Robinson
Jenette Creaney
Richard A. Lake
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1953-y

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine