Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2015

Open Access 01-12-2015 | Research

Consequences of exercising on ischemia–reperfusion injury in type 2 diabetic Goto-Kakizaki rat hearts: role of the HO/NOS system

Authors: Krisztina Kupai, Renáta Szabó, Médea Veszelka, Amin Al Awar, Szilvia Török, Anett Csonka, Zoltán Baráth, Anikó Pósa, Csaba Varga

Published in: Diabetology & Metabolic Syndrome | Issue 1/2015

Login to get access

Abstract

Background

It is well established that physical exercise continues to be one of the most valuable forms of non-pharmacological therapy against diabetes mellitus; however, the precise mechanism remains unknown. The aim of this study was to investigate the cardioprotective effect of voluntary exercise in the Goto-Kakizaki type 2 diabetic rat heart against ischemia–reperfusion injury and to clarify its biochemical background, focusing on the nitric oxide synthase/heme oxygenase system.

Methods

One group of male Goto-Kakizaki rats were allowed voluntary exercise, whereas others were kept sedentary for 6 weeks. At the end of the 6th week the hearts were isolated from both groups and subjected to 45-min coronary occlusion followed by 120-min reperfusion. The infarct size was evaluated by means of triphenyltetrazolium chloride staining. The cardiac and aortic nitric oxide synthase/heme oxygenase activities, plasma leptin and glucose concentrations were also assessed.

Results

The sedentary state prior to the ischemia–reperfusion injury was associated with a significantly higher infarct size (24.56 ± 2.21 vs. 16.66 ± 1.87 %) as compared with that in the voluntary wheel-running group. Exercise altered the constitutive nitric oxide synthase activity; an enhancement was evident in the cardiac (42.5 ± 2.72 vs. 75.6 ± 13.34 pmol/min/mg protein) and aortic tissues (382.5 ± 66.57 vs. 576.9 ± 63.16 pmol/min/mg protein). Exercise lead to a higher heme oxygenase activity (0.68 ± 0.08 vs. 0.92 ± 0.04 nmol bilirubin/h/mg protein) in the diabetic rat hearts. Exercise was associated with lower plasma leptin (192.23 ± 7.22 vs. 169.65 ± 4.6 ng/L) and blood glucose (19.61 ± 0.76 vs. 14.58 ± 0.88 mmol/L) levels.

Conclusions

These results indicate the beneficial role of exercise against myocardial ischemia–reperfusion injury in diabetic rats. These observations in experimental diabetes suggest that the cytoprotective mechanism of exercise involves modulation of the nitric oxide synthase/heme oxygenase system and metabolic parameters that may be responsible for cardioprotection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yin X, Zheng Y, Zhai X, Zhao X, Cai L. Diabetic inhibition of preconditioning- and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Exp Diabet Res. 2012;2012:198048. doi:10.1155/2012/198048. Yin X, Zheng Y, Zhai X, Zhao X, Cai L. Diabetic inhibition of preconditioning- and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Exp Diabet Res. 2012;2012:198048. doi:10.​1155/​2012/​198048.
2.
3.
go back to reference Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003;34(7):800–9.CrossRefPubMed Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003;34(7):800–9.CrossRefPubMed
6.
go back to reference Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, de Marais W, et al. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol. 2009;297(5):H1729–35. doi:10.1152/ajpheart.00484.2009.CrossRefPubMed Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, de Marais W, et al. Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol. 2009;297(5):H1729–35. doi:10.​1152/​ajpheart.​00484.​2009.CrossRefPubMed
8.
9.
go back to reference Bisbis S, Bailbe D, Tormo MA, Picarel-Blanchot F, Derouet M, Simon J, et al. Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol. 1993;265(5 Pt 1):E807–13.PubMed Bisbis S, Bailbe D, Tormo MA, Picarel-Blanchot F, Derouet M, Simon J, et al. Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol. 1993;265(5 Pt 1):E807–13.PubMed
10.
go back to reference Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69.CrossRefPubMed Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69.CrossRefPubMed
11.
go back to reference Maekawa F, Fujiwara K, Kohno D, Kuramochi M, Kurita H, Yada T. Young adult-specific hyperphagia in diabetic Goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus. J Neuroendocrinol. 2006;18(10):748–56. doi:10.1111/j.1365-2826.2006.01470.x.CrossRefPubMed Maekawa F, Fujiwara K, Kohno D, Kuramochi M, Kurita H, Yada T. Young adult-specific hyperphagia in diabetic Goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus. J Neuroendocrinol. 2006;18(10):748–56. doi:10.​1111/​j.​1365-2826.​2006.​01470.​x.CrossRefPubMed
12.
go back to reference Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. Estimation of the normal range of blood glucose in rats. Wei sheng yan jiu = Journal of hygiene research. 2010;39(2):133–7.PubMed Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. Estimation of the normal range of blood glucose in rats. Wei sheng yan jiu = Journal of hygiene research. 2010;39(2):133–7.PubMed
13.
go back to reference Olive JL, Miller GD. Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 2001;17(5):365–9.CrossRefPubMed Olive JL, Miller GD. Differential effects of maximal- and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 2001;17(5):365–9.CrossRefPubMed
15.
go back to reference Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108(12):1448–58. doi:10.1161/CIRCRESAHA.111.241117.PubMedCentralCrossRefPubMed Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108(12):1448–58. doi:10.​1161/​CIRCRESAHA.​111.​241117.PubMedCentralCrossRefPubMed
16.
go back to reference Sun MW, Zhong MF, Gu J, Qian FL, Gu JZ, Chen H. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase. Hypertens Res. 2008;31(4):805–16. doi:10.1291/hypres.31.805.CrossRefPubMed Sun MW, Zhong MF, Gu J, Qian FL, Gu JZ, Chen H. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase. Hypertens Res. 2008;31(4):805–16. doi:10.​1291/​hypres.​31.​805.CrossRefPubMed
17.
18.
go back to reference Scott-Burden T. Regulation of nitric oxide production by tetrahydrobiopterin. Circulation. 1995;91(1):248–50.CrossRefPubMed Scott-Burden T. Regulation of nitric oxide production by tetrahydrobiopterin. Circulation. 1995;91(1):248–50.CrossRefPubMed
21.
go back to reference Buelow R, Tullius SG, Volk HD. Protection of grafts by hemoxygenase-1 and its toxic product carbon monoxide. Am J Transp Off J Am Soc Transp Am Soc Transp Surg. 2001;1(4):313–5.CrossRef Buelow R, Tullius SG, Volk HD. Protection of grafts by hemoxygenase-1 and its toxic product carbon monoxide. Am J Transp Off J Am Soc Transp Am Soc Transp Surg. 2001;1(4):313–5.CrossRef
22.
go back to reference Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1029–37.PubMed Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1029–37.PubMed
23.
go back to reference Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol. 2000;278(2):H643–51.PubMed Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol. 2000;278(2):H643–51.PubMed
24.
go back to reference Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7(5):598–604. doi:10.1038/87929.CrossRefPubMed Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7(5):598–604. doi:10.​1038/​87929.CrossRefPubMed
25.
go back to reference Foresti R, Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radical Res. 1999;31(6):459–75.CrossRef Foresti R, Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radical Res. 1999;31(6):459–75.CrossRef
28.
go back to reference Grijalva J, Hicks S, Zhao X, Medikayala S, Kaminski PM, Wolin MS, et al. Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovas Diabetol. 2008;7:34. doi:10.1186/1475-2840-7-34.CrossRef Grijalva J, Hicks S, Zhao X, Medikayala S, Kaminski PM, Wolin MS, et al. Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovas Diabetol. 2008;7:34. doi:10.​1186/​1475-2840-7-34.CrossRef
30.
go back to reference Steensberg A, Keller C, Hillig T, Frosig C, Wojtaszewski JF, Pedersen BK, et al. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J Off Publ Feder Am Soc Exp Biol. 2007;21(11):2683–94. doi:10.1096/fj.06-7477com. Steensberg A, Keller C, Hillig T, Frosig C, Wojtaszewski JF, Pedersen BK, et al. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J Off Publ Feder Am Soc Exp Biol. 2007;21(11):2683–94. doi:10.​1096/​fj.​06-7477com.
31.
go back to reference Tsutsumi E, Murata Y, Sakamoto M, Horikawa E. Effects of exercise on the nephron of Goto-Kakizaki rats: morphological, and advanced glycation end-products and inducible nitric oxide synthase immunohistochemical analyses. J Diabet Comp. 2015;29(4):472–8. doi:10.1016/j.jdiacomp.2015.03.002.CrossRef Tsutsumi E, Murata Y, Sakamoto M, Horikawa E. Effects of exercise on the nephron of Goto-Kakizaki rats: morphological, and advanced glycation end-products and inducible nitric oxide synthase immunohistochemical analyses. J Diabet Comp. 2015;29(4):472–8. doi:10.​1016/​j.​jdiacomp.​2015.​03.​002.CrossRef
Metadata
Title
Consequences of exercising on ischemia–reperfusion injury in type 2 diabetic Goto-Kakizaki rat hearts: role of the HO/NOS system
Authors
Krisztina Kupai
Renáta Szabó
Médea Veszelka
Amin Al Awar
Szilvia Török
Anett Csonka
Zoltán Baráth
Anikó Pósa
Csaba Varga
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2015
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-015-0080-x

Other articles of this Issue 1/2015

Diabetology & Metabolic Syndrome 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine