Skip to main content
Top
Published in: Surgical and Radiologic Anatomy 6/2016

01-08-2016 | Original Article

Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study

Authors: Pierre-Jean Le Reste, C. Haegelen, B. Gibaud, T. Moreau, X. Morandi

Published in: Surgical and Radiologic Anatomy | Issue 6/2016

Login to get access

Abstract

Purpose

The dorsolateral prefrontal cortex (DLPFC) is a cortical area involved in higher cognitive functions, and at the center of the pathophysiology of mental disorders such as depression and schizophrenia. Considering these major roles and the development of deep brain stimulation, the object of this study was to assess the patterns of connectivity of the DLPFC with its main subcortical relay, the thalamus, with the help of probabilistic tractography.

Methods

We used T1-weighted imaging and diffusion data from 18 subjects from the Human Connectome Project. The DLPFC and the thalamic nuclear groups were defined using the combination of atlases, sulcogyral anatomy and cytoarchitectonic data. Probabilistic tractography was performed from the DLPFC to the thalamus. The patterns of connectivity were assessed using two indexes: (1) a connectivity index (CI) which evaluate the strength of connection (2) an asymmetry index (AI) which explores the inter-hemispheric variability.

Results

The analysis of CI showed significant connections between the DLPFC and the dorsomedial nuclei (p < 0.05), the anterior nuclear groups (p < 0.05) and the right centromedian nucleus (p < 0.05). No link was found between handedness and AI (p > 0.05). Most of subjects (15/18) had a right predominance of the thalamo cortical connections of the DLPFC.

Conclusions

Probabilistic tractography appears as a valuable non-invasive tool for the exploration of the thalamocortical connections between the dorsolateral prefrontal cortex and thalamic nuclei. It allowed to show different inter-hemispheric patterns of connectivity, and highlighted the centromedian nucleus as a key subcortical relay of executive functions.
Literature
1.
go back to reference Balconi M (2013) Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull 29:381–389CrossRefPubMed Balconi M (2013) Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull 29:381–389CrossRefPubMed
2.
go back to reference Bardinet E, Bhattacharjee M, Dormont D, Pidoux B, Malandain G, Schüpbach M, Ayache N, Cornu P, Agid Y, Yelnik J (2009) A three-dimensional histological atlas of the human basal ganglia. II Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg 110:208–219CrossRefPubMed Bardinet E, Bhattacharjee M, Dormont D, Pidoux B, Malandain G, Schüpbach M, Ayache N, Cornu P, Agid Y, Yelnik J (2009) A three-dimensional histological atlas of the human basal ganglia. II Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg 110:208–219CrossRefPubMed
3.
go back to reference Carmel PW (1970) Efferent projections of the ventral anterior nucleus of the thalamus in the monkey. Am J Anatomy 128:159–183CrossRef Carmel PW (1970) Efferent projections of the ventral anterior nucleus of the thalamus in the monkey. Am J Anatomy 128:159–183CrossRef
4.
go back to reference Chen J, Zhou C, Wu B, Wang Y, Li Q, Wei Y, Yang D, Mu J, Zhu D, Zou D, Xie P (2013) Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomized trials. Psychiatry Res 210:1260–1264CrossRefPubMed Chen J, Zhou C, Wu B, Wang Y, Li Q, Wei Y, Yang D, Mu J, Zhu D, Zou D, Xie P (2013) Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomized trials. Psychiatry Res 210:1260–1264CrossRefPubMed
5.
go back to reference D’Albis T, Haegelen C, Essert C, Fernandez-Vidal S, Lalys F, Jannin P (2014) PyDBS: an automated image processing workflow for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 10:117–128CrossRefPubMed D’Albis T, Haegelen C, Essert C, Fernandez-Vidal S, Lalys F, Jannin P (2014) PyDBS: an automated image processing workflow for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 10:117–128CrossRefPubMed
6.
go back to reference Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Buckner RL, Blacker D, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Buckner RL, Blacker D, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980CrossRefPubMed
7.
go back to reference Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13:663–681PubMedPubMedCentral Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13:663–681PubMedPubMedCentral
8.
go back to reference Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Krishnamurthy KB, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, SANTE Study Group (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908CrossRef Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Krishnamurthy KB, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, SANTE Study Group (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908CrossRef
10.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMed Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMed
12.
go back to reference Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, Hakonarson H, Gur RE, Gur RC, Verma R (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci USA 111:823–828CrossRefPubMed Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, Hakonarson H, Gur RE, Gur RC, Verma R (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci USA 111:823–828CrossRefPubMed
13.
go back to reference Jakab A, Blanc R, Berényi EL (2012) Mapping changes of in vivo connectivity patterns in the human mediodorsal thalamus: correlations with higher cognitive and executive functions. Brain Imaging Behav 6:472–483CrossRefPubMed Jakab A, Blanc R, Berényi EL (2012) Mapping changes of in vivo connectivity patterns in the human mediodorsal thalamus: correlations with higher cognitive and executive functions. Brain Imaging Behav 6:472–483CrossRefPubMed
14.
15.
go back to reference Kito S, Jung J, Kobayashi T, Koga Y (2009) Fiber tracking of white matter integrity connecting the mediodorsal nucleus of the thalamus and the prefrontal cortex in schizophrenia: a diffusion tensor imaging study. Eur Psychiatry 24:269–274CrossRefPubMed Kito S, Jung J, Kobayashi T, Koga Y (2009) Fiber tracking of white matter integrity connecting the mediodorsal nucleus of the thalamus and the prefrontal cortex in schizophrenia: a diffusion tensor imaging study. Eur Psychiatry 24:269–274CrossRefPubMed
16.
go back to reference Klein JC, Rushworth MFS, Behrens TEJ, Mackay CE, de Crespigny AJ, D’Arcueil H, Johansen-Berg H (2012) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 52:555–564 Klein JC, Rushworth MFS, Behrens TEJ, Mackay CE, de Crespigny AJ, D’Arcueil H, Johansen-Berg H (2012) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 52:555–564
17.
go back to reference Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Styner M, Gilmore JH (2014) Impact of sex and gonadal steroids on neonatal brain structure. Cereb Cortex 24:2721–2731CrossRefPubMed Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Styner M, Gilmore JH (2014) Impact of sex and gonadal steroids on neonatal brain structure. Cereb Cortex 24:2721–2731CrossRefPubMed
18.
go back to reference Lalys F, Haegelen C, Mehri M, Drapier S, Verin M, Jannin P (2013) Anatomo-clinical atlases correlate clinical data and electrode contact coordinates: application to subthalamic deep brain stimulation. J Neurosci Methods 212:297–307CrossRefPubMed Lalys F, Haegelen C, Mehri M, Drapier S, Verin M, Jannin P (2013) Anatomo-clinical atlases correlate clinical data and electrode contact coordinates: application to subthalamic deep brain stimulation. J Neurosci Methods 212:297–307CrossRefPubMed
19.
go back to reference Magro E, Moreau T, Seizeur R, Zemmoura I, Gibaud B, Morandi X (2014) Connectivity within the primary motor cortex: a DTI tractography study. Surg Radiol Anat 36:125–135CrossRefPubMed Magro E, Moreau T, Seizeur R, Zemmoura I, Gibaud B, Morandi X (2014) Connectivity within the primary motor cortex: a DTI tractography study. Surg Radiol Anat 36:125–135CrossRefPubMed
20.
go back to reference Martin JL, Barbanoj JM, Pérez V, Sacristan M (2003) Transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder. Cochrane Database Syst Rev Martin JL, Barbanoj JM, Pérez V, Sacristan M (2003) Transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder. Cochrane Database Syst Rev
21.
go back to reference Mashour GA, Walker EE, Mazurta RL (2005) Psychosurgery: past, present, and future. Brain Res Brain Res Rev 48:409–419CrossRefPubMed Mashour GA, Walker EE, Mazurta RL (2005) Psychosurgery: past, present, and future. Brain Res Brain Res Rev 48:409–419CrossRefPubMed
22.
go back to reference Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2006) Correlation between volume of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann’s areas in schizophrenia. Neurosci Lett 392:16–21CrossRefPubMed Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2006) Correlation between volume of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann’s areas in schizophrenia. Neurosci Lett 392:16–21CrossRefPubMed
23.
go back to reference Nahas Z, Molloy MA, Hughes PL, Oliver NC, Arana GW, Risch SG, George MS (1999) Repetitive transcranial magnetic stimulation: perspectives for application in the treatment of bipolar and unipolar disorders. Bipolar Disord 1:73–80CrossRefPubMed Nahas Z, Molloy MA, Hughes PL, Oliver NC, Arana GW, Risch SG, George MS (1999) Repetitive transcranial magnetic stimulation: perspectives for application in the treatment of bipolar and unipolar disorders. Bipolar Disord 1:73–80CrossRefPubMed
24.
go back to reference Nauczyciel C, Hellier P, Morandi X, Blestel S, Drapier D, Ferre JC, Barillot C, Millet B (2011) Assessment of standard coil positioning in TMS for depression. Psychiatry Res 186:232–238CrossRefPubMed Nauczyciel C, Hellier P, Morandi X, Blestel S, Drapier D, Ferre JC, Barillot C, Millet B (2011) Assessment of standard coil positioning in TMS for depression. Psychiatry Res 186:232–238CrossRefPubMed
25.
go back to reference Pasnicu A, Denoyer Y, Haegelen C, Pasqualini E, Biraben A (2013) Modulation of paroxysmal activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation. Epilepsy Res 104:264–268CrossRefPubMed Pasnicu A, Denoyer Y, Haegelen C, Pasqualini E, Biraben A (2013) Modulation of paroxysmal activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation. Epilepsy Res 104:264–268CrossRefPubMed
27.
go back to reference Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57CrossRefPubMed Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57CrossRefPubMed
28.
go back to reference Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. remapping of areas 9 and 46 unsing quantitative criteria. Cereb Cortex 5:307–322CrossRefPubMed Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. remapping of areas 9 and 46 unsing quantitative criteria. Cereb Cortex 5:307–322CrossRefPubMed
29.
go back to reference Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31CrossRefPubMed Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31CrossRefPubMed
30.
go back to reference Salerian AJ, Altar CA (2012) The prefrontal cortex influence over subcortical and limbic regions governs antidepressant response by N = H/(M + R). Psychiatry Res 204:1–12CrossRefPubMed Salerian AJ, Altar CA (2012) The prefrontal cortex influence over subcortical and limbic regions governs antidepressant response by N = H/(M + R). Psychiatry Res 204:1–12CrossRefPubMed
31.
go back to reference Sallet J, Mars RB, Nooman MA, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. The J Neurosci 33:12255–12274CrossRefPubMed Sallet J, Mars RB, Nooman MA, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. The J Neurosci 33:12255–12274CrossRefPubMed
32.
go back to reference Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075CrossRefPubMed Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075CrossRefPubMed
33.
go back to reference Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, WU-Minn HCP Consortium (2013) The WU-Minn human connectome project : an overview. NeuroImage 80:62–79CrossRef Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, WU-Minn HCP Consortium (2013) The WU-Minn human connectome project : an overview. NeuroImage 80:62–79CrossRef
34.
go back to reference Xiao D, Zikopoulos B, Barbas H (2009) Lamina and molecular organization of prefrontal projections to multiple thalamic nuclei. Neuroscience 161:1067–1081CrossRefPubMedPubMedCentral Xiao D, Zikopoulos B, Barbas H (2009) Lamina and molecular organization of prefrontal projections to multiple thalamic nuclei. Neuroscience 161:1067–1081CrossRefPubMedPubMedCentral
35.
go back to reference Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tandé D, Karachi C, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. atlas construction on immunohistochemical and MRI data. Neuroimage 34:618–638CrossRefPubMed Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tandé D, Karachi C, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. atlas construction on immunohistochemical and MRI data. Neuroimage 34:618–638CrossRefPubMed
Metadata
Title
Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study
Authors
Pierre-Jean Le Reste
C. Haegelen
B. Gibaud
T. Moreau
X. Morandi
Publication date
01-08-2016
Publisher
Springer Paris
Published in
Surgical and Radiologic Anatomy / Issue 6/2016
Print ISSN: 0930-1038
Electronic ISSN: 1279-8517
DOI
https://doi.org/10.1007/s00276-015-1603-8

Other articles of this Issue 6/2016

Surgical and Radiologic Anatomy 6/2016 Go to the issue