Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 4/2023

Open Access 30-11-2022 | Original Article

Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin(9-39)

Authors: Estel Collado Camps, Sanne A. M. van Lith, Annemarie Kip, Cathelijne Frielink, Lieke Joosten, Roland Brock, Martin Gotthardt

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 4/2023

Login to get access

Abstract

Purpose

Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4.

Methods

We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo.

Results

Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39).

Conclusion

We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gentilella R, Pechtner V, Corcos A, Consoli A. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab Res Rev [Internet]. John Wiley and Sons Ltd; 2019 [cited 2021 Feb 17];35. Available from: https://pubmed.ncbi.nlm.nih.gov/30156747/. Accessed 9 Jun 2022. Gentilella R, Pechtner V, Corcos A, Consoli A. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab Res Rev [Internet]. John Wiley and Sons Ltd; 2019 [cited 2021 Feb 17];35. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30156747/​. Accessed 9 Jun 2022.
3.
go back to reference Jansen TJP, van Lith SAM, Boss M, Brom M, Joosten L, Béhé M, et al. Exendin-4 analogs in insulinoma theranostics. J Label Compd Radiopharm. 2019;62:656–672. Jansen TJP, van Lith SAM, Boss M, Brom M, Joosten L, Béhé M, et al. Exendin-4 analogs in insulinoma theranostics. J Label Compd Radiopharm. 2019;62:656–672.
4.
go back to reference Christ E, Wild D, Ederer S, Béhé M, Nicolas G, Caplin ME, et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol [Internet]. Lancet Diabetes Endocrinol; 2013 [cited 2021 Jan 26];1:115–22. Available from: www.thelancet.com/. Accessed 9 Jun 2022. Christ E, Wild D, Ederer S, Béhé M, Nicolas G, Caplin ME, et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol [Internet]. Lancet Diabetes Endocrinol; 2013 [cited 2021 Jan 26];1:115–22. Available from: www.​thelancet.​com/​. Accessed 9 Jun 2022.
5.
go back to reference Boss M, Rottenburger C, Brenner W, Blankenstein O, Prasad V, Prasad S, et al. 68 Ga-NODAGA-exendin-4 PET improves the detection of focal congenital hyperinsulinism . J Nucl Med. 2021;jnumed.121.262327. Boss M, Rottenburger C, Brenner W, Blankenstein O, Prasad V, Prasad S, et al. 68 Ga-NODAGA-exendin-4 PET improves the detection of focal congenital hyperinsulinism . J Nucl Med. 2021;jnumed.121.262327.
6.
go back to reference Joosten L, Brom M, Peeters H, Bos D, Himpe E, Bouwens L, et al. Measuring the pancreatic ß cell mass in vivo with exendin SPECT during hyperglycemia and severe insulitis. Mol Pharm [Internet]. American Chemical Society; 2019 [cited 2021 Feb 5];16:4024–30. Available from: https://pubmed.ncbi.nlm.nih.gov/31345042/. Accessed 9 Jun 2022. Joosten L, Brom M, Peeters H, Bos D, Himpe E, Bouwens L, et al. Measuring the pancreatic ß cell mass in vivo with exendin SPECT during hyperglycemia and severe insulitis. Mol Pharm [Internet]. American Chemical Society; 2019 [cited 2021 Feb 5];16:4024–30. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​31345042/​. Accessed 9 Jun 2022.
7.
go back to reference Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities [Internet]. Diabetes. Diabetes; 2005 [cited 2021 Apr 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/16306347/. Accessed 9 Jun 2022. Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities [Internet]. Diabetes. Diabetes; 2005 [cited 2021 Apr 30]. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​16306347/​. Accessed 9 Jun 2022.
8.
go back to reference Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin- secreting β-cells. J Biol Chem. 1993;268:19650–5.CrossRefPubMed Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin- secreting β-cells. J Biol Chem. 1993;268:19650–5.CrossRefPubMed
9.
go back to reference Brom M, Joosten L, Oyen WJG, Gotthardt M, Boerman OC. Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas. Contrast Media Mol Imaging. 2012;7:160–6.CrossRefPubMed Brom M, Joosten L, Oyen WJG, Gotthardt M, Boerman OC. Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas. Contrast Media Mol Imaging. 2012;7:160–6.CrossRefPubMed
10.
go back to reference Rylova SN, Waser B, Pozzo L Del, Tonnesmann R, Mansi R, Meyer PT, et al. Approaches to improve the pharmacokinetics of radiolabeled glucagon-like peptide-1 receptor ligands using antagonistic tracers. J Nucl Med [Internet]. Society of Nuclear Medicine Inc.; 2016 [cited 2021 Feb 5];57:1282–8. Available from: https://pubmed.ncbi.nlm.nih.gov/27127218/. Accessed 9 Jun 2022. Rylova SN, Waser B, Pozzo L Del, Tonnesmann R, Mansi R, Meyer PT, et al. Approaches to improve the pharmacokinetics of radiolabeled glucagon-like peptide-1 receptor ligands using antagonistic tracers. J Nucl Med [Internet]. Society of Nuclear Medicine Inc.; 2016 [cited 2021 Feb 5];57:1282–8. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​27127218/​. Accessed 9 Jun 2022.
11.
go back to reference Mukai E, Toyoda K, Kimura H, Kawashima H, Fujimoto H, Ueda M, et al. GLP-1 receptor antagonist as a potential probe for pancreatic β-cell imaging. Biochem Biophys Res Commun [Internet]. Academic Press Inc.; 2009 [cited 2021 Feb 5];389:523–6. Available from: https://pubmed.ncbi.nlm.nih.gov/19737540/. Accessed 9 Jun 2022. Mukai E, Toyoda K, Kimura H, Kawashima H, Fujimoto H, Ueda M, et al. GLP-1 receptor antagonist as a potential probe for pancreatic β-cell imaging. Biochem Biophys Res Commun [Internet]. Academic Press Inc.; 2009 [cited 2021 Feb 5];389:523–6. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​19737540/​. Accessed 9 Jun 2022.
12.
go back to reference Kimura H, Matsuda H, Ogawa Y, Fujimoto H, Toyoda K, Fujita N, et al. Development of111In-labeled exendin(9-39) derivatives for single-photon emission computed tomography imaging of insulinoma. Bioorganic Med Chem [Internet]. Elsevier Ltd; 2017 [cited 2021 Mar 8];25:1406–12. Available from: https://pubmed.ncbi.nlm.nih.gov/28089587/. Accessed 9 Jun 2022. Kimura H, Matsuda H, Ogawa Y, Fujimoto H, Toyoda K, Fujita N, et al. Development of111In-labeled exendin(9-39) derivatives for single-photon emission computed tomography imaging of insulinoma. Bioorganic Med Chem [Internet]. Elsevier Ltd; 2017 [cited 2021 Mar 8];25:1406–12. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​28089587/​. Accessed 9 Jun 2022.
13.
go back to reference Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–7.CrossRefPubMed Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–7.CrossRefPubMed
14.
go back to reference Derossi D. Antennapedia homeodomain third helix as a peptide and oligonucleotide vector. Restor Neurol Neurosci. 1995;8:17–8.PubMed Derossi D. Antennapedia homeodomain third helix as a peptide and oligonucleotide vector. Restor Neurol Neurosci. 1995;8:17–8.PubMed
16.
go back to reference Liu C, Jiang K, Tai L, Liu Y, Wei G, Lu W, et al. Facile noninvasive retinal gene delivery enabled by penetratin. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2016 [cited 2021 Feb 3];8:19256–67. Available from: https://pubmed.ncbi.nlm.nih.gov/27400087/. Accessed 9 Jun 2022. Liu C, Jiang K, Tai L, Liu Y, Wei G, Lu W, et al. Facile noninvasive retinal gene delivery enabled by penetratin. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2016 [cited 2021 Feb 3];8:19256–67. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​27400087/​. Accessed 9 Jun 2022.
17.
go back to reference Nakase I, Konishi Y, Ueda M, Saji H, Futaki S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release [Internet]. J Control Release; 2012 [cited 2021 Feb 2];159:181–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22285548/. Accessed 9 Jun 2022. Nakase I, Konishi Y, Ueda M, Saji H, Futaki S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release [Internet]. J Control Release; 2012 [cited 2021 Feb 2];159:181–8. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​22285548/​. Accessed 9 Jun 2022.
18.
go back to reference Gurney LRI, Taggart JJ, Tong W-C, Jones AT, Robson SC, Taggart MJ. Inhibition of inflammatory changes in human myometrial cells by cell penetrating peptide and small molecule inhibitors of NFκB. Front Immunol [Internet]. 2018;9:2966. Available from: www.frontiersin.org. Accessed 9 Jun 2022. Gurney LRI, Taggart JJ, Tong W-C, Jones AT, Robson SC, Taggart MJ. Inhibition of inflammatory changes in human myometrial cells by cell penetrating peptide and small molecule inhibitors of NFκB. Front Immunol [Internet]. 2018;9:2966. Available from: www.​frontiersin.​org. Accessed 9 Jun 2022.
19.
go back to reference Sauter M, Strieker M, Kleist C, Wischnjow A, Daniel V, Altmann A, et al. Improving antibody-based therapies by chemical engineering of antibodies with multimeric cell-penetrating peptides for elevated intracellular delivery. J Control Release. 2020;322:200–8.CrossRefPubMed Sauter M, Strieker M, Kleist C, Wischnjow A, Daniel V, Altmann A, et al. Improving antibody-based therapies by chemical engineering of antibodies with multimeric cell-penetrating peptides for elevated intracellular delivery. J Control Release. 2020;322:200–8.CrossRefPubMed
20.
go back to reference Knight JC, Topping C, Mosley M, Kersemans V, Falzone N, Fernández-Varea JM, et al. PET imaging of DNA damage using 89Zr-labelled anti-γH2AX-TAT immunoconjugates. Eur J Nucl Med Mol Imaging. 2015;42:1707–17.CrossRefPubMed Knight JC, Topping C, Mosley M, Kersemans V, Falzone N, Fernández-Varea JM, et al. PET imaging of DNA damage using 89Zr-labelled anti-γH2AX-TAT immunoconjugates. Eur J Nucl Med Mol Imaging. 2015;42:1707–17.CrossRefPubMed
21.
go back to reference van Lith SAM, van den Brand D, Wallbrecher R, van Duijnhoven SMJ, Brock R, Leenders WPJ. A conjugate of an anti-epidermal growth factor receptor (EGFR) VHH and a cell-penetrating peptide drives receptor internalization and blocks EGFR activation. ChemBioChem. 2017;18:2390–2394. van Lith SAM, van den Brand D, Wallbrecher R, van Duijnhoven SMJ, Brock R, Leenders WPJ. A conjugate of an anti-epidermal growth factor receptor (EGFR) VHH and a cell-penetrating peptide drives receptor internalization and blocks EGFR activation. ChemBioChem. 2017;18:2390–2394.
22.
go back to reference Collado Camps E, van Lith SAM, Frielink C, Lankhof J, Dijkgraaf I, Gotthardt M, et al. CPPs to the test: effects on binding, uptake and biodistribution of a tumor targeting nanobody. pharmaceuticals [Internet]. 2021;14:602. Available from: https://doi.org/10.3390/ph14070602. Collado Camps E, van Lith SAM, Frielink C, Lankhof J, Dijkgraaf I, Gotthardt M, et al. CPPs to the test: effects on binding, uptake and biodistribution of a tumor targeting nanobody. pharmaceuticals [Internet]. 2021;14:602. Available from: https://​doi.​org/​10.​3390/​ph14070602.
23.
go back to reference M A, D J, P M, G L, PA H, CB W, et al. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology [Internet]. Endocrinology; 1992 [cited 2021 May 9];130:167–78. Available from: https://pubmed.ncbi.nlm.nih.gov/1370150/. Accessed 9 Jun 2022. M A, D J, P M, G L, PA H, CB W, et al. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology [Internet]. Endocrinology; 1992 [cited 2021 May 9];130:167–78. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​1370150/​. Accessed 9 Jun 2022.
25.
go back to reference Oddo A, Mortensen S, Thøgersen H, De Maria L, Hennen S, McGuire JN, et al. α-Helix or β-turn? An investigation into N-terminally constrained analogues of glucagon-like peptide 1 (GLP-1) and exendin-4. Biochemistry [Internet]. American Chemical Society; 2018 [cited 2021 May 9];57:4148–54. Available from: https://doi.org/10.1021/acs.biochem.8b00105. Oddo A, Mortensen S, Thøgersen H, De Maria L, Hennen S, McGuire JN, et al. α-Helix or β-turn? An investigation into N-terminally constrained analogues of glucagon-like peptide 1 (GLP-1) and exendin-4. Biochemistry [Internet]. American Chemical Society; 2018 [cited 2021 May 9];57:4148–54. Available from: https://​doi.​org/​10.​1021/​acs.​biochem.​8b00105.
26.
go back to reference Collado Camps E, Brock R. An opportunistic route to success: towards a change of paradigm to fully exploit the potential of cell-penetrating peptides. Bioorganic Med Chem. 2018;26:2780–7.CrossRef Collado Camps E, Brock R. An opportunistic route to success: towards a change of paradigm to fully exploit the potential of cell-penetrating peptides. Bioorganic Med Chem. 2018;26:2780–7.CrossRef
27.
go back to reference Willekens SMA, Joosten L, Boerman OC, Balhuizen A, Eizirik DL, Gotthardt M, et al. Strain differences determine the suitability of animal models for noninvasive in vivo beta cell mass determination with radiolabeled exendin. Mol imaging Biol [Internet]. Mol Imaging Biol; 2016 [cited 2022 Mar 25];18:705–14. Available from: https://pubmed.ncbi.nlm.nih.gov/26886298/. Accessed 9 Jun 2022. Willekens SMA, Joosten L, Boerman OC, Balhuizen A, Eizirik DL, Gotthardt M, et al. Strain differences determine the suitability of animal models for noninvasive in vivo beta cell mass determination with radiolabeled exendin. Mol imaging Biol [Internet]. Mol Imaging Biol; 2016 [cited 2022 Mar 25];18:705–14. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​26886298/​. Accessed 9 Jun 2022.
30.
go back to reference Jin E, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc [Internet]. J Am Chem Soc; 2013 [cited 2021 Jan 20];135:933–40. Available from: https://pubmed.ncbi.nlm.nih.gov/23253016/. Accessed 9 Jun 2022. Jin E, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc [Internet]. J Am Chem Soc; 2013 [cited 2021 Jan 20];135:933–40. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​23253016/​. Accessed 9 Jun 2022.
31.
go back to reference Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, et al. Acid-induced activated cell-penetrating peptide-modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2018 [cited 2021 Jan 20];10:43411–28. Available from: https://pubmed.ncbi.nlm.nih.gov/30508486/. Accessed 9 Jun 2022. Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, et al. Acid-induced activated cell-penetrating peptide-modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2018 [cited 2021 Jan 20];10:43411–28. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​30508486/​. Accessed 9 Jun 2022.
32.
go back to reference Sun L, Xie S, Qi J, Liu E, Liu D, Liu Q, et al. Cell-permeable, MMP-2 activatable, nickel ferrite and His-tagged fusion protein self-assembled fluorescent nanoprobe for tumor magnetic-targeting and imaging. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2017 [cited 2021 Jan 21];9:39209–22. Available from: https://doi.org/10.1021/acsami.7b12918. Sun L, Xie S, Qi J, Liu E, Liu D, Liu Q, et al. Cell-permeable, MMP-2 activatable, nickel ferrite and His-tagged fusion protein self-assembled fluorescent nanoprobe for tumor magnetic-targeting and imaging. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2017 [cited 2021 Jan 21];9:39209–22. Available from: https://​doi.​org/​10.​1021/​acsami.​7b12918.
33.
go back to reference Kristensen M, De Groot AM, Berthelsen J, Franzyk H, Sijts A, Nielsen HM. Conjugation of cell-penetrating peptides to parathyroid hormone affects its structure, potency, and transepithelial permeation. Bioconjug Chem [Internet]. American Chemical Society; 2015 [cited 2021 Apr 19];26:477–88. Available from: https://pubmed.ncbi.nlm.nih.gov/25611217/. Accessed 9 Jun 2022. Kristensen M, De Groot AM, Berthelsen J, Franzyk H, Sijts A, Nielsen HM. Conjugation of cell-penetrating peptides to parathyroid hormone affects its structure, potency, and transepithelial permeation. Bioconjug Chem [Internet]. American Chemical Society; 2015 [cited 2021 Apr 19];26:477–88. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​25611217/​. Accessed 9 Jun 2022.
34.
go back to reference Alsulays BB, Anwer MK, Soliman GA, Alshehri SM, Khafagy ES. Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles. Int J Nanomedicine [Internet]. 2019;14:9127–38. Available from: https://doi.org/10.2147/IJN.S225086. Alsulays BB, Anwer MK, Soliman GA, Alshehri SM, Khafagy ES. Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles. Int J Nanomedicine [Internet]. 2019;14:9127–38. Available from: https://​doi.​org/​10.​2147/​IJN.​S225086.
35.
go back to reference van den Brand D, Veelken C, Massuger L, Brock R. Penetration in 3D tumor spheroids and explants: adding a further dimension to the structure-activity relationship of cell-penetrating peptides. Biochim Biophys Acta - Biomembr [Internet]. Elsevier B.V.; 2018 [cited 2021 Jan 27];1860:1342–9. Available from: https://doi.org/10.1016/j.bbamem.2018.03.007. van den Brand D, Veelken C, Massuger L, Brock R. Penetration in 3D tumor spheroids and explants: adding a further dimension to the structure-activity relationship of cell-penetrating peptides. Biochim Biophys Acta - Biomembr [Internet]. Elsevier B.V.; 2018 [cited 2021 Jan 27];1860:1342–9. Available from: https://​doi.​org/​10.​1016/​j.​bbamem.​2018.​03.​007.
37.
go back to reference Boss M, Bos D, Frielink C, Sandker G, Bronkhorst P, Van Lith SAM, et al. Receptor-targeted photodynamic therapy of glucagon-like peptide 1 receptor-positive lesions. J Nucl Med [Internet]. 2020 [cited 2021 Feb 8];61:1588–93. Available from: http://jnm.snmjournals.org. Accessed 9 Jun 2022. Boss M, Bos D, Frielink C, Sandker G, Bronkhorst P, Van Lith SAM, et al. Receptor-targeted photodynamic therapy of glucagon-like peptide 1 receptor-positive lesions. J Nucl Med [Internet]. 2020 [cited 2021 Feb 8];61:1588–93. Available from: http://​jnm.​snmjournals.​org. Accessed 9 Jun 2022.
38.
go back to reference Begum AA, Wan Y, Toth I, Moyle PM. Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorganic Med Chem [Internet]. Elsevier Ltd; 2018 [cited 2021 Mar 5];26:516–26. Available from: https://pubmed.ncbi.nlm.nih.gov/29269254/. Accessed 9 Jun 2022. Begum AA, Wan Y, Toth I, Moyle PM. Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorganic Med Chem [Internet]. Elsevier Ltd; 2018 [cited 2021 Mar 5];26:516–26. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​29269254/​. Accessed 9 Jun 2022.
Metadata
Title
Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin(9-39)
Authors
Estel Collado Camps
Sanne A. M. van Lith
Annemarie Kip
Cathelijne Frielink
Lieke Joosten
Roland Brock
Martin Gotthardt
Publication date
30-11-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 4/2023
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-06041-y

Other articles of this Issue 4/2023

European Journal of Nuclear Medicine and Molecular Imaging 4/2023 Go to the issue