Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2016

Open Access 01-12-2016 | Research

Congenital primary adrenal insufficiency and selective aldosterone defects presenting as salt-wasting in infancy: a single center 10-year experience

Authors: Carla Bizzarri, Nicole Olivini, Stefania Pedicelli, Romana Marini, Germana Giannone, Paola Cambiaso, Marco Cappa

Published in: Italian Journal of Pediatrics | Issue 1/2016

Login to get access

Abstract

Background

Salt-wasting represents a relatively common cause of emergency admission in infants and may result in life-threatening complications. Neonatal kidneys show low glomerular filtration rate and immaturity of the distal nephron leading to reduced ability to concentrate urine.

Methods

A retrospective chart review was conducted for infants hospitalized in a single Institution from 1st January 2006 to 31st December 2015. The selection criterion was represented by the referral to the Endocrinology Unit for hyponatremia (serum sodium <130 mEq/L) of suspected endocrine origin at admission.

Results

Fifty-one infants were identified. In nine infants (17.6 %) hyponatremia was related to unrecognized chronic gastrointestinal or renal salt losses or reduced sodium intake. In 10 infants (19.6 %) hyponatremia was related to central nervous system diseases. In 19 patients (37.3 %) the final diagnosis was congenital adrenal hyperplasia (CAH). CAH was related to 21-hydroxylase deficiency in 18 patients, and to 3β-Hydroxysteroid dehydrogenase (3βHSD) deficiency in one patient. Thirteen patients (25.5 %) were affected by different non-CAH salt-wasting forms of adrenal origin. Four familial cases of X-linked adrenal hypoplasia congenita due to NROB1 gene mutation were identified. Two unrelated girls showed aldosterone synthase deficiency due to mutation of the CYP11B2 gene. Two unrelated infants were affected by familial glucocorticoid deficiency due to MC2R gene mutations. One girl showed pseudohypoaldosteronism related to mutations of the SCNN1G gene encoding for the epithelial sodium channel. Transient pseudohypoaldosteronism was identified in two patients with renal malformations. In two infants the genetic aetiology was not identified.

Conclusions

Emergency management of infants presenting with salt wasting requires correction of water losses and treatment of electrolyte imbalances. Nevertheless, the differential diagnosis may be difficult in emergency settings, and sometimes hospitalized infants presenting with salt-wasting are immediately started on steroid therapy to avoid life-threatening complications, before the correct diagnosis is reached. Physicians involved in the management of infants with salt-wasting of suspected hormonal origin should remember that, whenever practicable, a blood sample for the essential hormonal investigations should be collected before starting steroid therapy, to guide the subsequent diagnostic procedures and in particular to address the analysis of candidate genes.
Literature
1.
go back to reference Hsieh S, White PC. Presentation of primary adrenal insufficiency in childhood. J Clin Endocrinol Metab. 2011;96(6):E925–8.CrossRefPubMed Hsieh S, White PC. Presentation of primary adrenal insufficiency in childhood. J Clin Endocrinol Metab. 2011;96(6):E925–8.CrossRefPubMed
2.
go back to reference Lin L, Hindmarsh P, Metherell L, Alzyoud M, Al-Ali M, Brain C, et al. Severe loss-of-function mutations in the adrenocorticotropin receptor (ACTHR, MC2R) can be found in patients diagnosed with salt-losing adrenal hypoplasia. Clin Endocrinol (Oxf). 2007;66(2):205–10.CrossRef Lin L, Hindmarsh P, Metherell L, Alzyoud M, Al-Ali M, Brain C, et al. Severe loss-of-function mutations in the adrenocorticotropin receptor (ACTHR, MC2R) can be found in patients diagnosed with salt-losing adrenal hypoplasia. Clin Endocrinol (Oxf). 2007;66(2):205–10.CrossRef
3.
go back to reference Geller DS. Mineralocorticoid resistance. Clin Endocrinol (Oxf). 2005;62(5):513–20.CrossRef Geller DS. Mineralocorticoid resistance. Clin Endocrinol (Oxf). 2005;62(5):513–20.CrossRef
4.
go back to reference Sopfe J, Simmons JH. Failure to thrive, hyponatremia, and hyperkalemia in a neonate. Pediatr Ann. 2013;42(5):74–9.CrossRefPubMed Sopfe J, Simmons JH. Failure to thrive, hyponatremia, and hyperkalemia in a neonate. Pediatr Ann. 2013;42(5):74–9.CrossRefPubMed
5.
go back to reference Furgeson SB, Linas S. Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol. 2012;21(11):1842–5.CrossRef Furgeson SB, Linas S. Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol. 2012;21(11):1842–5.CrossRef
6.
go back to reference Riepe FG. Clinical and molecular features of type 1 pseudohypoaldosteronism. Horm Res. 2009;72(1):1–9.CrossRefPubMed Riepe FG. Clinical and molecular features of type 1 pseudohypoaldosteronism. Horm Res. 2009;72(1):1–9.CrossRefPubMed
7.
go back to reference Marthinsen L, Kornfalt R, Aili M, Anderrson D, Westgren U, Schaedel C. Recurrent Pseudonomas bronchopneumonia and other symptoms as in cystic fibrosis in a child with type I pseudohypoaldosteronism. Acta Pediatrica. 1998;87(4):472–4.CrossRef Marthinsen L, Kornfalt R, Aili M, Anderrson D, Westgren U, Schaedel C. Recurrent Pseudonomas bronchopneumonia and other symptoms as in cystic fibrosis in a child with type I pseudohypoaldosteronism. Acta Pediatrica. 1998;87(4):472–4.CrossRef
8.
go back to reference White PC. Aldosterone synthase deficiency and related disorders. Mol Cell Endocrinol. 2004;217(1–2):81–7.CrossRefPubMed White PC. Aldosterone synthase deficiency and related disorders. Mol Cell Endocrinol. 2004;217(1–2):81–7.CrossRefPubMed
9.
go back to reference Meimaridou E, Hughes CR, Kowalczyk J, Chan L, Clark A, Metherell L. ACTH resistance: genes and mechanisms. Endocr Dev. 2013;24:57–66.CrossRefPubMed Meimaridou E, Hughes CR, Kowalczyk J, Chan L, Clark A, Metherell L. ACTH resistance: genes and mechanisms. Endocr Dev. 2013;24:57–66.CrossRefPubMed
10.
go back to reference Meimaridou E, Hughes C, Kowalczyk J, Gausti L, Chapple J, King P. Familial glucocorticoid deficiency: new genes and mechanisms. Mol Cell Endocrinol. 2013;371(1–2):195–200.CrossRefPubMed Meimaridou E, Hughes C, Kowalczyk J, Gausti L, Chapple J, King P. Familial glucocorticoid deficiency: new genes and mechanisms. Mol Cell Endocrinol. 2013;371(1–2):195–200.CrossRefPubMed
11.
go back to reference Meimaridou E, Kowalczyk J, Guasti L, Hughes C, Wagner F, Frommolt P, et al. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat Genet. 2012;44(7):740–2.CrossRefPubMedPubMedCentral Meimaridou E, Kowalczyk J, Guasti L, Hughes C, Wagner F, Frommolt P, et al. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat Genet. 2012;44(7):740–2.CrossRefPubMedPubMedCentral
12.
go back to reference Prasad R, Chan L, Hughes C, Kaski J, Kowalczyk J, Savage M, et al. Thioredoxin reductase 2 (TXNRDd2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014;99(8):E1556–63.CrossRefPubMedPubMedCentral Prasad R, Chan L, Hughes C, Kaski J, Kowalczyk J, Savage M, et al. Thioredoxin reductase 2 (TXNRDd2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab. 2014;99(8):E1556–63.CrossRefPubMedPubMedCentral
13.
go back to reference Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):607–19.CrossRefPubMed Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):607–19.CrossRefPubMed
15.
go back to reference Miller WL, Flück CE. Adrenal cortex and its disorders. In: Sperling MA, editor. Pediatric Endocrinology. 4th ed. Philadelphia: Saunders; 2014. Miller WL, Flück CE. Adrenal cortex and its disorders. In: Sperling MA, editor. Pediatric Endocrinology. 4th ed. Philadelphia: Saunders; 2014.
16.
go back to reference Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005;90(6):3243–50.CrossRefPubMed Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005;90(6):3243–50.CrossRefPubMed
17.
go back to reference Simm PJ, McDonnell CM, Zacharin MR. Primary adrenal insufficiency in childhood and adolescence: advances in diagnosis and management. J Paediatr Child Health. 2004;40(11):596–9.CrossRefPubMed Simm PJ, McDonnell CM, Zacharin MR. Primary adrenal insufficiency in childhood and adolescence: advances in diagnosis and management. J Paediatr Child Health. 2004;40(11):596–9.CrossRefPubMed
18.
go back to reference Tsai SL, Green J, Metherell LA, Curtis F, Fernandez B, Healey A, et al. Primary adrenocortical insufficiency case series: genetic etiologies more common than expected. Horm Res Paediatr. 2016;85(1):35–42.CrossRefPubMed Tsai SL, Green J, Metherell LA, Curtis F, Fernandez B, Healey A, et al. Primary adrenocortical insufficiency case series: genetic etiologies more common than expected. Horm Res Paediatr. 2016;85(1):35–42.CrossRefPubMed
19.
go back to reference Malikova J, Flück CE. Novel insight into etiology, diagnosis and management of primary adrenal insufficiency. Horm Res Paediatr. 2014;82(3):145–57.CrossRefPubMed Malikova J, Flück CE. Novel insight into etiology, diagnosis and management of primary adrenal insufficiency. Horm Res Paediatr. 2014;82(3):145–57.CrossRefPubMed
20.
go back to reference Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.CrossRefPubMed Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.CrossRefPubMed
21.
go back to reference Root AW. Disorders of aldosterone synthesis, secretion, and cellular function. Curr Opin Pediatr. 2014;26(4):480–6.CrossRefPubMed Root AW. Disorders of aldosterone synthesis, secretion, and cellular function. Curr Opin Pediatr. 2014;26(4):480–6.CrossRefPubMed
22.
go back to reference Taranta A, Bizzarri C, Masotti A, Sciré G, Pampanini V, Cappa M. A case of primary selective hypoaldosteronism carrying three mutations in the aldosterone synthase (Cyp11b2) gene. Gene. 2012;500(1):22–7.CrossRefPubMed Taranta A, Bizzarri C, Masotti A, Sciré G, Pampanini V, Cappa M. A case of primary selective hypoaldosteronism carrying three mutations in the aldosterone synthase (Cyp11b2) gene. Gene. 2012;500(1):22–7.CrossRefPubMed
23.
go back to reference Bizzarri C, Massimi A, Federici L, Cualbu A, Loche S, Bellincampi L, et al. A New Homozygous Frameshift Mutation in the HSD3B2 Gene in an Apparently Nonconsanguineous Italian Family. Horm Res Paediatr. 2016. [Epub ahead of print]. Bizzarri C, Massimi A, Federici L, Cualbu A, Loche S, Bellincampi L, et al. A New Homozygous Frameshift Mutation in the HSD3B2 Gene in an Apparently Nonconsanguineous Italian Family. Horm Res Paediatr. 2016. [Epub ahead of print].
24.
go back to reference Attia NA, Marzouk YI. Pseudohypoaldosteronism in a Neonate Presenting as life-threatening hyperkalemia. Case Rep Endocrinol. 2016;2016:6384697.PubMedPubMedCentral Attia NA, Marzouk YI. Pseudohypoaldosteronism in a Neonate Presenting as life-threatening hyperkalemia. Case Rep Endocrinol. 2016;2016:6384697.PubMedPubMedCentral
25.
go back to reference Clayton PE, Miller WL, Oberfield SE, Ritzén EM, Sippell WG, Speiser PW, ESPE/LWPES CAH Working Group. Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society. Horm Res. 2002;58(4):188–95.CrossRefPubMed Clayton PE, Miller WL, Oberfield SE, Ritzén EM, Sippell WG, Speiser PW, ESPE/LWPES CAH Working Group. Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society. Horm Res. 2002;58(4):188–95.CrossRefPubMed
Metadata
Title
Congenital primary adrenal insufficiency and selective aldosterone defects presenting as salt-wasting in infancy: a single center 10-year experience
Authors
Carla Bizzarri
Nicole Olivini
Stefania Pedicelli
Romana Marini
Germana Giannone
Paola Cambiaso
Marco Cappa
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2016
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-016-0282-3

Other articles of this Issue 1/2016

Italian Journal of Pediatrics 1/2016 Go to the issue