Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2017

Open Access 01-12-2017 | Review

Congenital myopathies: clinical phenotypes and new diagnostic tools

Authors: Denise Cassandrini, Rosanna Trovato, Anna Rubegni, Sara Lenzi, Chiara Fiorillo, Jacopo Baldacci, Carlo Minetti, Guja Astrea, Claudio Bruno, Filippo M. Santorelli, the Italian Network on Congenital Myopathies

Published in: Italian Journal of Pediatrics | Issue 1/2017

Login to get access

Abstract

Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Literature
1.
go back to reference North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24:97–116.PubMedCrossRef North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24:97–116.PubMedCrossRef
2.
go back to reference Tubridy N, Fontaine B, Eymard B. Congenital myopathies and congenital muscular dystrophies. Curr Opin Neurol. 2001;14:575–82.PubMedCrossRef Tubridy N, Fontaine B, Eymard B. Congenital myopathies and congenital muscular dystrophies. Curr Opin Neurol. 2001;14:575–82.PubMedCrossRef
3.
go back to reference Jungbluth H, Voermans NC. Congenital myopathies: not only a paediatric topic. Curr Opin Neurol. 2016;29:642–50.PubMedCrossRef Jungbluth H, Voermans NC. Congenital myopathies: not only a paediatric topic. Curr Opin Neurol. 2016;29:642–50.PubMedCrossRef
4.
go back to reference Colombo I, Scoto M, Manzur AY, Robb SA, Maggi L, Gowda V, et al. Congenital myopathies: natural history of a large pediatric cohort. Neurology. 2015;84:28–35.PubMedPubMedCentralCrossRef Colombo I, Scoto M, Manzur AY, Robb SA, Maggi L, Gowda V, et al. Congenital myopathies: natural history of a large pediatric cohort. Neurology. 2015;84:28–35.PubMedPubMedCentralCrossRef
5.
go back to reference Fardeau M, Tome F. Congenital myopathies. In: Engler AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 1994. p. 1487–533. Fardeau M, Tome F. Congenital myopathies. In: Engler AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 1994. p. 1487–533.
6.
go back to reference Wallgren-Pettersson C, Laing NG. Report of the 70th ENMC international workshop: nemaline myopathy. Naarden, the Netherlands.11-13 June 1999. Neuromuscul Disord. 2000;10:299–306.PubMedCrossRef Wallgren-Pettersson C, Laing NG. Report of the 70th ENMC international workshop: nemaline myopathy. Naarden, the Netherlands.11-13 June 1999. Neuromuscul Disord. 2000;10:299–306.PubMedCrossRef
7.
go back to reference Ryan MM, Schnell C, Strickland CD, Shield LK, Morgan G, Iannaccone ST, et al. Nemaline myopathy: a clinical study of 143 cases. Ann Neurol. 2001;50:312–20.PubMedCrossRef Ryan MM, Schnell C, Strickland CD, Shield LK, Morgan G, Iannaccone ST, et al. Nemaline myopathy: a clinical study of 143 cases. Ann Neurol. 2001;50:312–20.PubMedCrossRef
8.
go back to reference Fridzianska A, Badurska B, Ryniewicz B, Dembek I. “Cap disease”: a new congenital myopathy. Neurology 1981;31:1113–1120. Fridzianska A, Badurska B, Ryniewicz B, Dembek I. “Cap disease”: a new congenital myopathy. Neurology 1981;31:1113–1120.
9.
go back to reference Ohlsson M, Quijano-Roy S, Darin N, Brochier G, Lacène E, Avila-Smirnow D, et al. New morphologic and genetic finding in cap disease associated with betatropomyosin (TMP2) mutations. Neurology. 2008;71:1896–901.PubMedCrossRef Ohlsson M, Quijano-Roy S, Darin N, Brochier G, Lacène E, Avila-Smirnow D, et al. New morphologic and genetic finding in cap disease associated with betatropomyosin (TMP2) mutations. Neurology. 2008;71:1896–901.PubMedCrossRef
10.
go back to reference Clarke NF, Domazetovska A, Waddell L, Kornberg A, McLean C, North KN. Cap disease due to mutation of the beta-tropomyosin gene (TMP2). Neuromuscul Disord. 2009;19:348–51.PubMedCrossRef Clarke NF, Domazetovska A, Waddell L, Kornberg A, McLean C, North KN. Cap disease due to mutation of the beta-tropomyosin gene (TMP2). Neuromuscul Disord. 2009;19:348–51.PubMedCrossRef
11.
go back to reference De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J, Pellissier JF, et al. A TPM3 mutation causing cap myopathy. Neuromuscul Disord. 2009;19:685–8.PubMedCrossRef De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J, Pellissier JF, et al. A TPM3 mutation causing cap myopathy. Neuromuscul Disord. 2009;19:685–8.PubMedCrossRef
12.
go back to reference Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J. Cap myopathy caused by mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord. 2010;20:238–40.PubMedCrossRef Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D, Vajsar J. Cap myopathy caused by mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul Disord. 2010;20:238–40.PubMedCrossRef
13.
go back to reference Piteau SJ, Rossiter JP, Smith RG, MacKenzie JJ. Congenital myopathy with cap-like structures and nemaline rods: case report and literature review. Pediatr Neurol. 2014;51:192–7.PubMedCrossRef Piteau SJ, Rossiter JP, Smith RG, MacKenzie JJ. Congenital myopathy with cap-like structures and nemaline rods: case report and literature review. Pediatr Neurol. 2014;51:192–7.PubMedCrossRef
14.
go back to reference Dubowitz V, Pearse AG. Oxidative enzyme and phosphorylase in central core disease of muscle. Lancet. 1960;2:23–4.PubMedCrossRef Dubowitz V, Pearse AG. Oxidative enzyme and phosphorylase in central core disease of muscle. Lancet. 1960;2:23–4.PubMedCrossRef
15.
go back to reference Engel AG, Gomez MR, Groover RV. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc. 1971;46:666–81.PubMed Engel AG, Gomez MR, Groover RV. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin Proc. 1971;46:666–81.PubMed
17.
go back to reference Romero NB, Monnier N, Viollet L, Cortey A, Chevallay M, Leroy JP, et al. Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain. 2003;126:2341–9.PubMedCrossRef Romero NB, Monnier N, Viollet L, Cortey A, Chevallay M, Leroy JP, et al. Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain. 2003;126:2341–9.PubMedCrossRef
18.
go back to reference De Cauwer H, Heytens L, Martin JJ. 89th ENMC international workshop: central Core disease. Hilversum, The Netherlands, 19-20 January 2001. Neuromuscul Disord. 2002;12:588–95.PubMedCrossRef De Cauwer H, Heytens L, Martin JJ. 89th ENMC international workshop: central Core disease. Hilversum, The Netherlands, 19-20 January 2001. Neuromuscul Disord. 2002;12:588–95.PubMedCrossRef
19.
go back to reference Zhou H, Jungbluth H, Sewry CA, Feng L, Bertini E, Bushby K, et al. Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain. 2007;130:2024–36.PubMedCrossRef Zhou H, Jungbluth H, Sewry CA, Feng L, Bertini E, Bushby K, et al. Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain. 2007;130:2024–36.PubMedCrossRef
21.
go back to reference Jungbluth H, Zhou H, Hartley L, Halliger-Keller B, Messina S, Longman C, et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology. 2005;65:1930–5.PubMedCrossRef Jungbluth H, Zhou H, Hartley L, Halliger-Keller B, Messina S, Longman C, et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology. 2005;65:1930–5.PubMedCrossRef
22.
go back to reference Bharucha-Goebel DX, Santi M, Medne L, Zukosky K, Dastgir J, Shieh PB, et al. CG. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology. 2013;80:1584–9.PubMedPubMedCentralCrossRef Bharucha-Goebel DX, Santi M, Medne L, Zukosky K, Dastgir J, Shieh PB, et al. CG. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology. 2013;80:1584–9.PubMedPubMedCentralCrossRef
23.
go back to reference Spiro AJ, Shy GM, Gonatas NK. Myotubular myopathy: persistence of fetal muscle in an adolescent boy. Arch Neurol. 1966;14:1–14.PubMedCrossRef Spiro AJ, Shy GM, Gonatas NK. Myotubular myopathy: persistence of fetal muscle in an adolescent boy. Arch Neurol. 1966;14:1–14.PubMedCrossRef
24.
25.
go back to reference Fattori F, Maggi L, Bruno C, Cassandrini D, Codemo V, Catteruccia M, et al. Centronuclear myopathies: genotype-phenotype correlation and frequency of defined genetic forms in an Italian cohort. J Neurol. 2015;262:1728–40.PubMedCrossRef Fattori F, Maggi L, Bruno C, Cassandrini D, Codemo V, Catteruccia M, et al. Centronuclear myopathies: genotype-phenotype correlation and frequency of defined genetic forms in an Italian cohort. J Neurol. 2015;262:1728–40.PubMedCrossRef
26.
go back to reference Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH. X-Linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol. 2005;64:555–64.PubMedCrossRef Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH. X-Linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol. 2005;64:555–64.PubMedCrossRef
27.
go back to reference Savarese M, Musumeci O, Giugliano T, Rubegni A, Fiorillo C, Fattori F, et al. Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers. Neuromuscul Disord. 2016;26:292–9.PubMedPubMedCentralCrossRef Savarese M, Musumeci O, Giugliano T, Rubegni A, Fiorillo C, Fattori F, et al. Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers. Neuromuscul Disord. 2016;26:292–9.PubMedPubMedCentralCrossRef
28.
go back to reference Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A. Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr. 1999;134:206–14.PubMedCrossRef Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A. Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr. 1999;134:206–14.PubMedCrossRef
29.
go back to reference McEntagart M, Parsons G, Buj-Bello A, Biancalana V, Fenton I, Little M, et al. Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord. 2002;12:939–46.PubMedCrossRef McEntagart M, Parsons G, Buj-Bello A, Biancalana V, Fenton I, Little M, et al. Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord. 2002;12:939–46.PubMedCrossRef
30.
go back to reference Hammans SR, Robinson DO, Moutou C, Kennedy CR, Dennis NR, Hughes PJ, Ellison DWA. Clinical and genetic study of a manifesting heterozygote with X-linked myotubular myopathy. Neuromuscul Disord. 2000;10:133–7.PubMedCrossRef Hammans SR, Robinson DO, Moutou C, Kennedy CR, Dennis NR, Hughes PJ, Ellison DWA. Clinical and genetic study of a manifesting heterozygote with X-linked myotubular myopathy. Neuromuscul Disord. 2000;10:133–7.PubMedCrossRef
31.
go back to reference Tanner SM, Orstavik KH, Kristiansen M, Lev D, Lerman-Sagie T, Sadeh M, et al. Skewed X-inactivation in a manifesting carrier of X-linked myotubular myopathy and in her non-manifesting carrier mother. Hum Genet. 1999;104:249–53.PubMedCrossRef Tanner SM, Orstavik KH, Kristiansen M, Lev D, Lerman-Sagie T, Sadeh M, et al. Skewed X-inactivation in a manifesting carrier of X-linked myotubular myopathy and in her non-manifesting carrier mother. Hum Genet. 1999;104:249–53.PubMedCrossRef
32.
go back to reference Bevilacqua JA, Bitoun M, Biancalana V, Oldfors A, Stoltenburg G, Claeys KG, et al. Necklace fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol. 2009;117:283–91.PubMedCrossRef Bevilacqua JA, Bitoun M, Biancalana V, Oldfors A, Stoltenburg G, Claeys KG, et al. Necklace fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol. 2009;117:283–91.PubMedCrossRef
33.
34.
go back to reference Concilla PA, Kalayanaraman K, Verity MA, Munsat T, Pearson CM. Familial myopathy with probable lysis of myofibrils in type I fibers. Neurology. 1971;21:579–85.CrossRef Concilla PA, Kalayanaraman K, Verity MA, Munsat T, Pearson CM. Familial myopathy with probable lysis of myofibrils in type I fibers. Neurology. 1971;21:579–85.CrossRef
35.
go back to reference Tajsharghi H, Thornell LE, Lindberg C, Lindvall B, Henriksson KG, Oldfors A. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol. 2003;54:494–500.PubMedCrossRef Tajsharghi H, Thornell LE, Lindberg C, Lindvall B, Henriksson KG, Oldfors A. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol. 2003;54:494–500.PubMedCrossRef
36.
go back to reference Laing NG, Laing BA, Meredith C, Wilton SD, Robbins P, Honeyman K, et al. Autosomal dominant distal myopathy: linkage to chromosome 14. Am J Hum Genet. 1995;56:422–7.PubMedPubMedCentral Laing NG, Laing BA, Meredith C, Wilton SD, Robbins P, Honeyman K, et al. Autosomal dominant distal myopathy: linkage to chromosome 14. Am J Hum Genet. 1995;56:422–7.PubMedPubMedCentral
37.
go back to reference Ortolano S, Tarrío R, Blanco-Arias P, Teijeira S, Rodríguez-Trelles F, García-Murias M, et al. A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy. Neuromuscul Disord. 2011;21:254–62.PubMedCrossRef Ortolano S, Tarrío R, Blanco-Arias P, Teijeira S, Rodríguez-Trelles F, García-Murias M, et al. A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy. Neuromuscul Disord. 2011;21:254–62.PubMedCrossRef
38.
go back to reference Cullup T, Lamont PJ, Cirak S, Damian MS, Wallefeld W, Gooding R, et al. Mutations in MYH7 cause multi-minicore disease (MmD) with variable cardiac involvement. Neuromuscul Disord. 2012;22:1096–104.PubMedCrossRef Cullup T, Lamont PJ, Cirak S, Damian MS, Wallefeld W, Gooding R, et al. Mutations in MYH7 cause multi-minicore disease (MmD) with variable cardiac involvement. Neuromuscul Disord. 2012;22:1096–104.PubMedCrossRef
39.
go back to reference Ruggiero L, Fiorillo C, Gibertini S, De Stefano F, Manganelli F, Iodice R, et al. A rare mutation in MYH7 gene occurs with overlapping phenotype. Biochem Biophys Res Commun. 2015;457:262–6.PubMedCrossRef Ruggiero L, Fiorillo C, Gibertini S, De Stefano F, Manganelli F, Iodice R, et al. A rare mutation in MYH7 gene occurs with overlapping phenotype. Biochem Biophys Res Commun. 2015;457:262–6.PubMedCrossRef
40.
go back to reference Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, et al. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis. 2016;11:91.PubMedPubMedCentralCrossRef Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, et al. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis. 2016;11:91.PubMedPubMedCentralCrossRef
41.
go back to reference Astrea G, Petrucci A, Cassandrini D, Savarese M, Trovato R, Lispi L, Rubegni A, et al. Myoimaging in the NGS era: the discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features--a case report. BMC Med Genet. 2016;17:25.PubMedPubMedCentralCrossRef Astrea G, Petrucci A, Cassandrini D, Savarese M, Trovato R, Lispi L, Rubegni A, et al. Myoimaging in the NGS era: the discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features--a case report. BMC Med Genet. 2016;17:25.PubMedPubMedCentralCrossRef
42.
go back to reference Astrea G, Munteanu I, Cassandrini D, Lillis S, Trovato R, Pegoraro E, et al. A diagnostic dilemma in a family with cystinuria type B resolved by muscle magnetic resonance. Pediatr Neurol. 2015;52:548–51.PubMedCrossRef Astrea G, Munteanu I, Cassandrini D, Lillis S, Trovato R, Pegoraro E, et al. A diagnostic dilemma in a family with cystinuria type B resolved by muscle magnetic resonance. Pediatr Neurol. 2015;52:548–51.PubMedCrossRef
43.
go back to reference Castiglioni C, Cassandrini D, Fattori F, Bellacchio E, D'Amico A, Alvarez K, et al. Muscle magnetic resonance imaging and histopathology in ACTA1-related congenital nemaline myopathy. Muscle Nerve. 2014;50:1011–6.PubMedCrossRef Castiglioni C, Cassandrini D, Fattori F, Bellacchio E, D'Amico A, Alvarez K, et al. Muscle magnetic resonance imaging and histopathology in ACTA1-related congenital nemaline myopathy. Muscle Nerve. 2014;50:1011–6.PubMedCrossRef
44.
go back to reference Dubowitz V, Sewry CA. Muscle biopsy: a practical approach. 3rd ed. Edinburgh: Sanders Elsevier; 2007. Dubowitz V, Sewry CA. Muscle biopsy: a practical approach. 3rd ed. Edinburgh: Sanders Elsevier; 2007.
45.
go back to reference Sewry CA, Müller C, Davis M, Dwyer JS, Dove J, Evans G, et al. The spectrum of pathology in central core disease. Neuromuscul Disord. 2002;12:930–8.PubMedCrossRef Sewry CA, Müller C, Davis M, Dwyer JS, Dove J, Evans G, et al. The spectrum of pathology in central core disease. Neuromuscul Disord. 2002;12:930–8.PubMedCrossRef
46.
go back to reference Boncompagni S, Rossi AE, Micaroni M, Hamilton SL, Dirksen RT, Franzini-Armstrong C, et al. Characterization and temporal development of cores in a mouse model of malignant hyperthermia. Proc Natl Acad Sci U S A. 2009;106:21996–2001.PubMedPubMedCentralCrossRef Boncompagni S, Rossi AE, Micaroni M, Hamilton SL, Dirksen RT, Franzini-Armstrong C, et al. Characterization and temporal development of cores in a mouse model of malignant hyperthermia. Proc Natl Acad Sci U S A. 2009;106:21996–2001.PubMedPubMedCentralCrossRef
47.
go back to reference Bönnemann CG, Thompson TG, van der Ven PF, Goebel HH, Warlo I, Vollmers B, et al. Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle. J Neurol Sci. 2003;206:71–8.PubMedCrossRef Bönnemann CG, Thompson TG, van der Ven PF, Goebel HH, Warlo I, Vollmers B, et al. Filamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle. J Neurol Sci. 2003;206:71–8.PubMedCrossRef
48.
go back to reference Jungbluth H, Davis MR, Müller C, Counsell S, Allsop J, Chattopadhyay A, et al. Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul Disord. 2004;14:785–90.PubMedCrossRef Jungbluth H, Davis MR, Müller C, Counsell S, Allsop J, Chattopadhyay A, et al. Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul Disord. 2004;14:785–90.PubMedCrossRef
49.
go back to reference Mercuri E, Pichiecchio A, Counsell S, Allsop J, Cini C, Jungbluth H, Uggetti C, Bydder GA. Short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol. 2002;6:305–7.PubMedCrossRef Mercuri E, Pichiecchio A, Counsell S, Allsop J, Cini C, Jungbluth H, Uggetti C, Bydder GA. Short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol. 2002;6:305–7.PubMedCrossRef
50.
go back to reference Mercuri E, Cini C, Pichiecchio A, Allsop J, Counsell S, Zolkipli Z, et al. Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord. 2003;13:554–8.PubMedCrossRef Mercuri E, Cini C, Pichiecchio A, Allsop J, Counsell S, Zolkipli Z, et al. Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord. 2003;13:554–8.PubMedCrossRef
51.
go back to reference Astrea G, Schessl J, Clement E, Tosetti M, Mercuri E, Rutherford M, et al. Muscle MRI in FHL1-linked reducing body myopathy. Neuromuscul Disord. 2009;19:689–91.PubMedCrossRef Astrea G, Schessl J, Clement E, Tosetti M, Mercuri E, Rutherford M, et al. Muscle MRI in FHL1-linked reducing body myopathy. Neuromuscul Disord. 2009;19:689–91.PubMedCrossRef
52.
go back to reference Astrea G, Brisca G, Fiorillo C, Valle M, Tosetti M, Bruno C, et al. Muscle MRI in TRPV4-related congenital distal SMA. Neurology. 2012;78:364–5.PubMedCrossRef Astrea G, Brisca G, Fiorillo C, Valle M, Tosetti M, Bruno C, et al. Muscle MRI in TRPV4-related congenital distal SMA. Neurology. 2012;78:364–5.PubMedCrossRef
53.
54.
go back to reference Jungbluth H, Sewry CA, Counsell S, Allsop J, Chattopadhyay A, Mercuri E, et al. Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul Disord. 2004;14:779–84.PubMedCrossRef Jungbluth H, Sewry CA, Counsell S, Allsop J, Chattopadhyay A, Mercuri E, et al. Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul Disord. 2004;14:779–84.PubMedCrossRef
55.
go back to reference Schessl J, Medne L, Hu Y, Zou Y, Brown MJ, Huse JT, et al. MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord. 2007;17:28–32.PubMedCrossRef Schessl J, Medne L, Hu Y, Zou Y, Brown MJ, Huse JT, et al. MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord. 2007;17:28–32.PubMedCrossRef
56.
go back to reference Kesper K, Kornblum C, Reimann J, Lutterbey G, Schröder R, Wattjes MP. Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand. 2009;120:111–8.PubMedCrossRef Kesper K, Kornblum C, Reimann J, Lutterbey G, Schröder R, Wattjes MP. Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand. 2009;120:111–8.PubMedCrossRef
57.
go back to reference Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, et al. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord. 2010;20:229–37.PubMedCrossRef Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, et al. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord. 2010;20:229–37.PubMedCrossRef
58.
go back to reference Willis TA, Hollingsworth KG, Coombs A, Sveen ML, Andersen S, Stojkovic T, et al. Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study. PLoS One. 2013;8:e70993.PubMedPubMedCentralCrossRef Willis TA, Hollingsworth KG, Coombs A, Sveen ML, Andersen S, Stojkovic T, et al. Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study. PLoS One. 2013;8:e70993.PubMedPubMedCentralCrossRef
59.
go back to reference Pelin K, Hilpelä P, Donner K, Sewry C, Akkari PA, Wilton SD, et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A. 1999;96:2305–10.PubMedPubMedCentralCrossRef Pelin K, Hilpelä P, Donner K, Sewry C, Akkari PA, Wilton SD, et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A. 1999;96:2305–10.PubMedPubMedCentralCrossRef
60.
go back to reference Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999;23:208–12.PubMedCrossRef Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999;23:208–12.PubMedCrossRef
61.
go back to reference Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C, et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet. 1995;9:75–9.PubMedCrossRef Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C, et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet. 1995;9:75–9.PubMedCrossRef
62.
go back to reference Donner K, Ollikainen M, Ridanpaa M, Christen HJ, Goebel HH, de Visser M, et al. Mutations in the beta-tropomyosin (TPM2) gene-a rare cause of nemaline myopathy. Neuromuscul Disord. 2002;12:151–8.PubMedCrossRef Donner K, Ollikainen M, Ridanpaa M, Christen HJ, Goebel HH, de Visser M, et al. Mutations in the beta-tropomyosin (TPM2) gene-a rare cause of nemaline myopathy. Neuromuscul Disord. 2002;12:151–8.PubMedCrossRef
63.
go back to reference Johnston JJ, Kelley RI, Crawford TO, Morton DH, Agarwala R, Koch T, et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet. 2000;67:814–21.PubMedPubMedCentralCrossRef Johnston JJ, Kelley RI, Crawford TO, Morton DH, Agarwala R, Koch T, et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet. 2000;67:814–21.PubMedPubMedCentralCrossRef
64.
go back to reference Agrawal PB, Greenleaf RS, Tomczak K, Lehtokari VL, Wallgren-Pettersson C, Wallefeld W, et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet. 2007;80:162–7.PubMedCrossRef Agrawal PB, Greenleaf RS, Tomczak K, Lehtokari VL, Wallgren-Pettersson C, Wallefeld W, et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet. 2007;80:162–7.PubMedCrossRef
65.
go back to reference Sambuughin N, Yau K, Olive M, Duff RM, Bayarsaikhan M, Lu S, et al. Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am J Hum Genet. 2010;87:842–7.PubMedPubMedCentralCrossRef Sambuughin N, Yau K, Olive M, Duff RM, Bayarsaikhan M, Lu S, et al. Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am J Hum Genet. 2010;87:842–7.PubMedPubMedCentralCrossRef
66.
go back to reference Ravenscroft G, Miyatake S, Lehtokari K, Todd EJ, Vornanen P, Yau KS, et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet. 2013;93:6–18.PubMedPubMedCentralCrossRef Ravenscroft G, Miyatake S, Lehtokari K, Todd EJ, Vornanen P, Yau KS, et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet. 2013;93:6–18.PubMedPubMedCentralCrossRef
67.
go back to reference Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, et al. Identification of KLHL41 mutations implicates BTB-kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet. 2013;93:1108–17.PubMedPubMedCentralCrossRef Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, et al. Identification of KLHL41 mutations implicates BTB-kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet. 2013;93:1108–17.PubMedPubMedCentralCrossRef
68.
go back to reference Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest. 2014;11:4693–708.CrossRef Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest. 2014;11:4693–708.CrossRef
69.
go back to reference Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet. 1993;5:46–50.PubMedCrossRef Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet. 1993;5:46–50.PubMedCrossRef
70.
go back to reference Ferreiro A, Monnier N, Romero NB, Leroy JP, Bönnemann C, Haenggeli CA, et al. A recessive form of central core disease, transiently presenting as multiminicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002;51:750–9.PubMedCrossRef Ferreiro A, Monnier N, Romero NB, Leroy JP, Bönnemann C, Haenggeli CA, et al. A recessive form of central core disease, transiently presenting as multiminicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002;51:750–9.PubMedCrossRef
71.
go back to reference Treves S, Anderson AA, Ducreux S, Divet A, Bleunven C, Grasso C, et al. Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders. Neuromuscul Disord. 2005;15:577–87.PubMedCrossRef Treves S, Anderson AA, Ducreux S, Divet A, Bleunven C, Grasso C, et al. Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders. Neuromuscul Disord. 2005;15:577–87.PubMedCrossRef
72.
go back to reference Ramachandran S, Chakraborty A, Xu L, Mei Y, Samsó M, Dokholyan NV, et al. Structural determinants of skeletal muscle ryanodine receptor gating. J Biol Chem. 2013;288:6154–65.PubMedPubMedCentralCrossRef Ramachandran S, Chakraborty A, Xu L, Mei Y, Samsó M, Dokholyan NV, et al. Structural determinants of skeletal muscle ryanodine receptor gating. J Biol Chem. 2013;288:6154–65.PubMedPubMedCentralCrossRef
73.
go back to reference Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, et al. Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol. 2011;37:271–84.PubMedCrossRef Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, et al. Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol. 2011;37:271–84.PubMedCrossRef
74.
go back to reference Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010;31:E1544–50.PubMedCrossRef Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010;31:E1544–50.PubMedCrossRef
75.
go back to reference Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, et al. Mutation in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993;5:51–5.PubMedCrossRef Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, et al. Mutation in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993;5:51–5.PubMedCrossRef
76.
go back to reference McCarthy TV, Quane KA, Linch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat. 2000;15:410–7.PubMedCrossRef McCarthy TV, Quane KA, Linch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat. 2000;15:410–7.PubMedCrossRef
77.
go back to reference Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71:739–49.PubMedPubMedCentralCrossRef Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002;71:739–49.PubMedPubMedCentralCrossRef
78.
go back to reference Castets P, Bertrand AT, Beuvin M, Ferry A, Le Grand F, Castets M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet. 2011;4:694–704.CrossRef Castets P, Bertrand AT, Beuvin M, Ferry A, Le Grand F, Castets M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet. 2011;4:694–704.CrossRef
79.
go back to reference Maggi L, Scoto M, Cirak S, Robb SA, Klein A, Lillis S, et al. Congenital myopathies - clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscul Disord. 2013;23:195–205.PubMedCrossRef Maggi L, Scoto M, Cirak S, Robb SA, Klein A, Lillis S, et al. Congenital myopathies - clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscul Disord. 2013;23:195–205.PubMedCrossRef
80.
go back to reference Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet. 2000;22:2223–9.CrossRef Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet. 2000;22:2223–9.CrossRef
81.
go back to reference Bitoun M, Maugenre S, Jeannet PY. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. 2005;37:1207–9.PubMedCrossRef Bitoun M, Maugenre S, Jeannet PY. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. 2005;37:1207–9.PubMedCrossRef
82.
go back to reference Durieux AC, Vignaud A, Prudhon B, Viou MT, Beuvin M, Vassilopoulos S, et al. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet. 2010;19:4820–36.PubMedCrossRef Durieux AC, Vignaud A, Prudhon B, Viou MT, Beuvin M, Vassilopoulos S, et al. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet. 2010;19:4820–36.PubMedCrossRef
83.
go back to reference Fabrizi GM, Ferrarini M, Cavallaro T, Cabrini I, Cerini R, Bertolasi L, Rizzuto N. Two novel mutations in dynamin-2 cause axonal Charcot-Marie-toot disease. Neurology. 2007;69:291–5.PubMedCrossRef Fabrizi GM, Ferrarini M, Cavallaro T, Cabrini I, Cerini R, Bertolasi L, Rizzuto N. Two novel mutations in dynamin-2 cause axonal Charcot-Marie-toot disease. Neurology. 2007;69:291–5.PubMedCrossRef
84.
go back to reference Koutsopoulos OS, Kretz C, Weller CM, Roux A, Mojzisova H, Böhm J, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet. 2013;21:637–42.PubMedCrossRef Koutsopoulos OS, Kretz C, Weller CM, Roux A, Mojzisova H, Böhm J, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet. 2013;21:637–42.PubMedCrossRef
85.
go back to reference Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007;39:1134–9.PubMedCrossRef Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007;39:1134–9.PubMedCrossRef
86.
go back to reference Böhm J, Biancalana V, Malfatti E, Dondaine N, Koch C, Vasli N, et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain. 2014;137:3160–70.PubMedCrossRef Böhm J, Biancalana V, Malfatti E, Dondaine N, Koch C, Vasli N, et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain. 2014;137:3160–70.PubMedCrossRef
87.
go back to reference Toussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol. 2011;121:253–66.PubMedCrossRef Toussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol. 2011;121:253–66.PubMedCrossRef
88.
go back to reference Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010;68:717–26.PubMedCrossRef Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010;68:717–26.PubMedCrossRef
89.
go back to reference Ceyhan-Birsoy O, Agrawal PB, Hidalgo C. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013;81:1205–14.PubMedPubMedCentralCrossRef Ceyhan-Birsoy O, Agrawal PB, Hidalgo C. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology. 2013;81:1205–14.PubMedPubMedCentralCrossRef
90.
go back to reference Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J hum. G E N. 2013;95:218–26. Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, et al. SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J hum. G E N. 2013;95:218–26.
91.
go back to reference Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet. 2012;91:365–71.PubMedPubMedCentralCrossRef Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet. 2012;91:365–71.PubMedPubMedCentralCrossRef
92.
go back to reference Clarke N, Kolski H, Dye D, Lim E, Smith RL, Patel R, et al. Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol. 2008;63:329–37.PubMedCrossRef Clarke N, Kolski H, Dye D, Lim E, Smith RL, Patel R, et al. Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol. 2008;63:329–37.PubMedCrossRef
93.
go back to reference Lawlor MW, Dechene ET, Roumm E, Geggel AS, Moghadaszadeh B, Beggs AH. Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum Mutat. 2010;31:176–83.PubMedPubMedCentralCrossRef Lawlor MW, Dechene ET, Roumm E, Geggel AS, Moghadaszadeh B, Beggs AH. Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum Mutat. 2010;31:176–83.PubMedPubMedCentralCrossRef
94.
go back to reference Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, et al. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol. 2004;56:689–94.PubMedCrossRef Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, et al. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol. 2004;56:689–94.PubMedCrossRef
95.
go back to reference Brandis A, Aronica E, Goebel HH. TPM2 mutation. Neuromuscul Disord 2008;18:1005. Brandis A, Aronica E, Goebel HH. TPM2 mutation. Neuromuscul Disord 2008;18:1005.
96.
go back to reference Schartner V, Romero NB, Donkervoort S, Treves S, Munot P, Pierson TM, et al. Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol. 2017;133:517–33.PubMedCrossRef Schartner V, Romero NB, Donkervoort S, Treves S, Munot P, Pierson TM, et al. Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol. 2017;133:517–33.PubMedCrossRef
97.
go back to reference Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in native American myopathy. Nat Commun. 2013, 1952;4 Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, et al. Stac3 is a component of the excitation-contraction coupling machinery and mutated in native American myopathy. Nat Commun. 2013, 1952;4
98.
go back to reference Linsley JW, Hsu IU, Groom L, Yarotskyy V, Lavorato M, Horstick EJ, et al. Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proc Natl Acad Sci U S A. 2017;114:E228–36.PubMedCrossRef Linsley JW, Hsu IU, Groom L, Yarotskyy V, Lavorato M, Horstick EJ, et al. Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proc Natl Acad Sci U S A. 2017;114:E228–36.PubMedCrossRef
99.
go back to reference Zaharieva IT, Thor MG, Oates EC, van Karnebeek C, Hendson G, Blom E, et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain. 2016;139:674–91.PubMedCrossRef Zaharieva IT, Thor MG, Oates EC, van Karnebeek C, Hendson G, Blom E, et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain. 2016;139:674–91.PubMedCrossRef
100.
go back to reference Mercier S, Lornage X, Malfatti E, Marcorelles P, Letournel F, Boscher C, et al. Expanding the spectrum of congenital myopathy linked to recessive mutations in SCN4A. Neurology. 2017;88:414–6.PubMedCrossRef Mercier S, Lornage X, Malfatti E, Marcorelles P, Letournel F, Boscher C, et al. Expanding the spectrum of congenital myopathy linked to recessive mutations in SCN4A. Neurology. 2017;88:414–6.PubMedCrossRef
101.
go back to reference Knierim E, Gill E, Seifert F, Morales-Gonzalez S, Unudurthi SD, Hund TJ, Stenzel W, Schuelke MA. Recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness. Hum Genet. 2017;136:903–10.PubMedCrossRef Knierim E, Gill E, Seifert F, Morales-Gonzalez S, Unudurthi SD, Hund TJ, Stenzel W, Schuelke MA. Recessive mutation in beta-IV-spectrin (SPTBN4) associates with congenital myopathy, neuropathy, and central deafness. Hum Genet. 2017;136:903–10.PubMedCrossRef
103.
104.
go back to reference Oliveira J, Gonçalves A, Taipa R, Melo-Pires M, Oliveira ME, Costa JL, et al. M. New massive parallel sequencing approach improves the genetic characterization of congenital myopathies. J Hum Genet. 2016;61:497–505.PubMedCrossRef Oliveira J, Gonçalves A, Taipa R, Melo-Pires M, Oliveira ME, Costa JL, et al. M. New massive parallel sequencing approach improves the genetic characterization of congenital myopathies. J Hum Genet. 2016;61:497–505.PubMedCrossRef
105.
go back to reference Nigro V, Savarese M. Next-generation sequencing approaches for the diagnosis of skeletal muscle disorders. Curr Opin Neurol. 2016;29:621–7.PubMedCrossRef Nigro V, Savarese M. Next-generation sequencing approaches for the diagnosis of skeletal muscle disorders. Curr Opin Neurol. 2016;29:621–7.PubMedCrossRef
106.
go back to reference Savarese M, Di Fruscio G, Torella A, Fiorillo C, Magri F, Fanin M, et al. The genetic basis of undiagnosed muscular dystrophies and myopathies: results from 504 patients. Neurology. 2016;87:71–6.PubMedPubMedCentralCrossRef Savarese M, Di Fruscio G, Torella A, Fiorillo C, Magri F, Fanin M, et al. The genetic basis of undiagnosed muscular dystrophies and myopathies: results from 504 patients. Neurology. 2016;87:71–6.PubMedPubMedCentralCrossRef
107.
go back to reference Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol. 2015;72:1424–32.PubMedCrossRef Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol. 2015;72:1424–32.PubMedCrossRef
108.
go back to reference Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genet. 2015;8:33. Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genet. 2015;8:33.
110.
go back to reference Kress W, Rost S, Kolokotronis K, Meng G, Pluta N, Müller-Reible C. The genetic approach: next-generation sequencing-based diagnosis of congenital and infantile myopathies/muscle dystrophies. Neuropediatrics. 2017;48:242–6.PubMedCrossRef Kress W, Rost S, Kolokotronis K, Meng G, Pluta N, Müller-Reible C. The genetic approach: next-generation sequencing-based diagnosis of congenital and infantile myopathies/muscle dystrophies. Neuropediatrics. 2017;48:242–6.PubMedCrossRef
111.
112.
go back to reference Jungbluth H, Ochala J, Treves S, Gautel M. Current and future therapeutic approaches to the congenital myopathies. Semin Cell Dev Biol. 2017;64:191–200.PubMedCrossRef Jungbluth H, Ochala J, Treves S, Gautel M. Current and future therapeutic approaches to the congenital myopathies. Semin Cell Dev Biol. 2017;64:191–200.PubMedCrossRef
113.
go back to reference Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T, Shapiro F, et al. Consensus statement on standard of care for congenital myopathies. J Child Neurol. 2012;27:363–82.PubMedPubMedCentralCrossRef Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T, Shapiro F, et al. Consensus statement on standard of care for congenital myopathies. J Child Neurol. 2012;27:363–82.PubMedPubMedCentralCrossRef
114.
go back to reference Messina S, Hartley L, Main M, Kinali M, Jungbluth H. Muntoni F, .Mercuri E. Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics. 2004;35:262–6.PubMedCrossRef Messina S, Hartley L, Main M, Kinali M, Jungbluth H. Muntoni F, .Mercuri E. Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics. 2004;35:262–6.PubMedCrossRef
115.
116.
go back to reference Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 2012;135:1115–27.PubMedPubMedCentralCrossRef Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 2012;135:1115–27.PubMedPubMedCentralCrossRef
117.
go back to reference Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM, Lim EM, et al. Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J Cell Biol. 2009;185:903–15.PubMedPubMedCentralCrossRef Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM, Lim EM, et al. Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J Cell Biol. 2009;185:903–15.PubMedPubMedCentralCrossRef
118.
go back to reference Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain. 2015;138:246–68.PubMedCrossRef Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain. 2015;138:246–68.PubMedCrossRef
Metadata
Title
Congenital myopathies: clinical phenotypes and new diagnostic tools
Authors
Denise Cassandrini
Rosanna Trovato
Anna Rubegni
Sara Lenzi
Chiara Fiorillo
Jacopo Baldacci
Carlo Minetti
Guja Astrea
Claudio Bruno
Filippo M. Santorelli
the Italian Network on Congenital Myopathies
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2017
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-017-0419-z

Other articles of this Issue 1/2017

Italian Journal of Pediatrics 1/2017 Go to the issue