Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 10/2016

01-10-2016 | Focussed Research Review

Concepts in glioma immunotherapy

Authors: Michael Platten, Lukas Bunse, Wolfgang Wick, Theresa Bunse

Published in: Cancer Immunology, Immunotherapy | Issue 10/2016

Login to get access

Abstract

Immunotherapeutic concepts in neurooncology have been developed for many decades but have mainly been hampered by poor definition of relevant antigens and selective measures to target the central nervous system. Independent of the recent remarkable successes in clinical immunooncology with checkpoint inhibitors and vaccines, immunotherapy of brain tumors in general and gliomas in particular has evolved with novel neurooncology-specific concepts over the past years providing new phase 1 approaches of individualized immunotherapy to first phase three clinical trials. These concepts are driven by a high medical need in the absence of approved targeted therapies and refute the classic dogma that the central nervous system is immune-privileged and hence inaccessible to potent antitumor immunity. Instead, measures have been taken to improve the odds for successful immunotherapies, including rational targeting of relevant antigens and integration of immunotherapies into standard of care primary radiochemotherapy to increase the efficacy of antitumor immunity in a meaningful time window. This review highlights concepts and challenges associated with epitope discovery and selection and trial design.
Literature
1.
go back to reference Merchant RE, Grant AJ, Merchant LH, Young HF (1988) Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 62:665–671CrossRefPubMed Merchant RE, Grant AJ, Merchant LH, Young HF (1988) Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 62:665–671CrossRefPubMed
2.
go back to reference Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327CrossRefPubMed Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327CrossRefPubMed
3.
go back to reference Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101CrossRefPubMed Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101CrossRefPubMed
4.
go back to reference Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281CrossRefPubMed Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281CrossRefPubMed
5.
go back to reference Schlager C, Korner H, Krueger M et al (2016) Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530:349–353CrossRefPubMed Schlager C, Korner H, Krueger M et al (2016) Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530:349–353CrossRefPubMed
6.
7.
go back to reference Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999CrossRefPubMedPubMedCentral Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999CrossRefPubMedPubMedCentral
9.
go back to reference Platten M, Ochs K, Lemke D, Opitz C, Wick W (2014) Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep 14:440CrossRefPubMed Platten M, Ochs K, Lemke D, Opitz C, Wick W (2014) Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep 14:440CrossRefPubMed
10.
go back to reference Ajithkumar T, Parkinson C, Fife K, Corrie P, Jefferies S (2015) Evolving treatment options for melanoma brain metastases. Lancet Oncol 16:e486–e497CrossRefPubMed Ajithkumar T, Parkinson C, Fife K, Corrie P, Jefferies S (2015) Evolving treatment options for melanoma brain metastases. Lancet Oncol 16:e486–e497CrossRefPubMed
11.
go back to reference Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514CrossRefPubMedPubMedCentral Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514CrossRefPubMedPubMedCentral
12.
go back to reference Dutoit V, Herold-Mende C, Hilf N et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054CrossRefPubMed Dutoit V, Herold-Mende C, Hilf N et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054CrossRefPubMed
13.
go back to reference Reardon DA, Gokhale PC, Klein SR et al (2016) Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic. Immunocompetent Model Cancer Immunol Res 4:124–135CrossRefPubMed Reardon DA, Gokhale PC, Klein SR et al (2016) Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic. Immunocompetent Model Cancer Immunol Res 4:124–135CrossRefPubMed
14.
go back to reference Di Giacomo AM, Ascierto PA, Pilla L et al (2012) Ipilimumab and fotemustine in patients with advanced melanoma [NIBIT-M1]: an open-label, single-arm phase 2 trial. Lancet Oncol 13:879–886CrossRefPubMed Di Giacomo AM, Ascierto PA, Pilla L et al (2012) Ipilimumab and fotemustine in patients with advanced melanoma [NIBIT-M1]: an open-label, single-arm phase 2 trial. Lancet Oncol 13:879–886CrossRefPubMed
15.
go back to reference Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128CrossRefPubMedPubMedCentral Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128CrossRefPubMedPubMedCentral
16.
17.
go back to reference Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193CrossRefPubMed Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193CrossRefPubMed
18.
go back to reference van Thuijl HF, Mazor T, Johnson BE et al (2015) Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 129:597–607CrossRefPubMedPubMedCentral van Thuijl HF, Mazor T, Johnson BE et al (2015) Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 129:597–607CrossRefPubMedPubMedCentral
19.
go back to reference Milojkovic Kerklaan B, van Tellingen O, Huitema AD, Beijnen JH, Boogerd W, Schellens JH, Brandsma D (2016) Strategies to target drugs to gliomas and CNS metastases of solid tumors. J Neurol 263:428–440CrossRefPubMed Milojkovic Kerklaan B, van Tellingen O, Huitema AD, Beijnen JH, Boogerd W, Schellens JH, Brandsma D (2016) Strategies to target drugs to gliomas and CNS metastases of solid tumors. J Neurol 263:428–440CrossRefPubMed
20.
go back to reference Berghoff AS, Kiesel B, Widhalm G et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17:1064–1075CrossRefPubMed Berghoff AS, Kiesel B, Widhalm G et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17:1064–1075CrossRefPubMed
21.
go back to reference Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 18:807–818CrossRefPubMed Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 18:807–818CrossRefPubMed
22.
go back to reference Nduom EK, Wei J, Yaghi NK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18:195–205CrossRefPubMed Nduom EK, Wei J, Yaghi NK et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18:195–205CrossRefPubMed
23.
go back to reference Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19:3165–3175CrossRefPubMedPubMedCentral Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19:3165–3175CrossRefPubMedPubMedCentral
24.
go back to reference Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567CrossRefPubMedPubMedCentral Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567CrossRefPubMedPubMedCentral
25.
go back to reference Powles T, Eder JP, Fine GD et al (2014) MPDL3280A [anti-PD-L1] treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefPubMed Powles T, Eder JP, Fine GD et al (2014) MPDL3280A [anti-PD-L1] treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefPubMed
27.
go back to reference Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov 13:759–780CrossRefPubMed Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov 13:759–780CrossRefPubMed
29.
go back to reference Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol 16:274–279CrossRefPubMed Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol 16:274–279CrossRefPubMed
30.
go back to reference Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369CrossRefPubMedPubMedCentral Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369CrossRefPubMedPubMedCentral
31.
go back to reference Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729CrossRefPubMedPubMedCentral Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729CrossRefPubMedPubMedCentral
32.
go back to reference Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of rindopepimut [CDX-110] in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 17:854–861CrossRefPubMedPubMedCentral Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of rindopepimut [CDX-110] in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 17:854–861CrossRefPubMedPubMedCentral
33.
go back to reference Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302–310CrossRefPubMedPubMedCentral Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302–310CrossRefPubMedPubMedCentral
34.
go back to reference Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed
36.
go back to reference Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMed Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMed
37.
38.
go back to reference Cairns RA, Mak TW (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3:730–741CrossRefPubMed Cairns RA, Mak TW (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3:730–741CrossRefPubMed
39.
go back to reference Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601CrossRefPubMed Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601CrossRefPubMed
40.
go back to reference Pellegatta S, Valletta L, Corbetta C et al (2015) Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun 3:4CrossRefPubMedPubMedCentral Pellegatta S, Valletta L, Corbetta C et al (2015) Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun 3:4CrossRefPubMedPubMedCentral
41.
go back to reference Bunse L, Schumacher T, Sahm F et al (2015) Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Investig 125:593–606PubMedPubMedCentral Bunse L, Schumacher T, Sahm F et al (2015) Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Investig 125:593–606PubMedPubMedCentral
42.
go back to reference Braumuller H, Wieder T, Brenner E et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365CrossRefPubMed Braumuller H, Wieder T, Brenner E et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365CrossRefPubMed
43.
44.
go back to reference Rajasagi M, Shukla SA, Fritsch EF et al (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–462CrossRefPubMedPubMedCentral Rajasagi M, Shukla SA, Fritsch EF et al (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–462CrossRefPubMedPubMedCentral
Metadata
Title
Concepts in glioma immunotherapy
Authors
Michael Platten
Lukas Bunse
Wolfgang Wick
Theresa Bunse
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 10/2016
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-016-1874-x

Other articles of this Issue 10/2016

Cancer Immunology, Immunotherapy 10/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine