Skip to main content
Top
Published in: Journal of Digital Imaging 1/2014

01-02-2014

Computer-Aided Diagnosis for Phase-Contrast X-ray Computed Tomography: Quantitative Characterization of Human Patellar Cartilage with High-Dimensional Geometric Features

Authors: Mahesh B. Nagarajan, Paola Coan, Markus B. Huber, Paul C. Diemoz, Christian Glaser, Axel Wismüller

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2014

Login to get access

Abstract

Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.
Literature
2.
go back to reference Yelin E: Cost of musculoskeletal diseases: impact of work disability and functional decline. J Rheumatol 68:8–11, 2003 Yelin E: Cost of musculoskeletal diseases: impact of work disability and functional decline. J Rheumatol 68:8–11, 2003
3.
go back to reference Maclean C, Knight K, Paulus H, Brook R, Shekelle P: Costs attributable to osteoarthritis. J Rheumatol 25:2213–2218, 1998PubMed Maclean C, Knight K, Paulus H, Brook R, Shekelle P: Costs attributable to osteoarthritis. J Rheumatol 25:2213–2218, 1998PubMed
5.
go back to reference Coan P, Mollenhauer J, Wagner A, Muehleman C, Bravin A: Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF. Eur J Radiol 68:41–48, 2008CrossRef Coan P, Mollenhauer J, Wagner A, Muehleman C, Bravin A: Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF. Eur J Radiol 68:41–48, 2008CrossRef
6.
go back to reference Bravin A, Coan P, Suortti P: X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–35, 2013PubMedCrossRef Bravin A, Coan P, Suortti P: X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–35, 2013PubMedCrossRef
7.
go back to reference Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I: On the possibility of X-ray phase contrast micro-imaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492, 1995CrossRef Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I: On the possibility of X-ray phase contrast micro-imaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492, 1995CrossRef
8.
go back to reference Davis T, Gao D, Gureyev T, Stevenson A, Wilkins S: Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598, 1995CrossRef Davis T, Gao D, Gureyev T, Stevenson A, Wilkins S: Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598, 1995CrossRef
9.
go back to reference Takeda T, Momose A, Itai Y, Jin W, Hirano K: Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. Acad Radiol 2:799–803, 1995PubMedCrossRef Takeda T, Momose A, Itai Y, Jin W, Hirano K: Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. Acad Radiol 2:799–803, 1995PubMedCrossRef
10.
go back to reference Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk RH, Rokvic T, Vascotto A, Tromba G, Cova MA: Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259:684–694, 2011PubMedCrossRef Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk RH, Rokvic T, Vascotto A, Tromba G, Cova MA: Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259:684–694, 2011PubMedCrossRef
11.
go back to reference Zhao Y, Brun E, Coan P, Huang Z, Sztrókay A, Diemoz PC, Liebhardt S, Mittone A, Gasilov S, Miao J, Bravin A: High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. PNAS, doi:10.1073/pnas.1204460109, 2012 Zhao Y, Brun E, Coan P, Huang Z, Sztrókay A, Diemoz PC, Liebhardt S, Mittone A, Gasilov S, Miao J, Bravin A: High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. PNAS, doi:10.​1073/​pnas.​1204460109, 2012
12.
go back to reference Mollenhauer J, Aurich M, Zhong Z, Muehleman C, Cole A, Hasnah M, Oltulu O, Kuettner K, Margulis A, Chapman L: Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthritis Cartilage 10:163–171, 2002PubMedCrossRef Mollenhauer J, Aurich M, Zhong Z, Muehleman C, Cole A, Hasnah M, Oltulu O, Kuettner K, Margulis A, Chapman L: Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthritis Cartilage 10:163–171, 2002PubMedCrossRef
13.
go back to reference Muehleman C, Majumdar S, Issever A, Arfelli F, Menk R, Rigon L, Heitner G, Reime B, Metge J, Wagner A, Kuettner K, Mollenhauer J: X-ray detection of structural orientation in human articular cartilage. Osteoarthritis Cartilage 12:97–105, 2004PubMedCrossRef Muehleman C, Majumdar S, Issever A, Arfelli F, Menk R, Rigon L, Heitner G, Reime B, Metge J, Wagner A, Kuettner K, Mollenhauer J: X-ray detection of structural orientation in human articular cartilage. Osteoarthritis Cartilage 12:97–105, 2004PubMedCrossRef
14.
go back to reference Coan P, Bamberg F, Diemoz PC, Bravin A, Timpert K, Mützel E, Raya J, Adam-Neumair S, Reiser MF, Glaser C: Characterization of osteoarthritic and normal human patella cartilage by computed tomography X-ray phase-contrast imaging: a feasibility study. Invest Radiol 45:437–444, 2010PubMed Coan P, Bamberg F, Diemoz PC, Bravin A, Timpert K, Mützel E, Raya J, Adam-Neumair S, Reiser MF, Glaser C: Characterization of osteoarthritic and normal human patella cartilage by computed tomography X-ray phase-contrast imaging: a feasibility study. Invest Radiol 45:437–444, 2010PubMed
15.
go back to reference Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D: Diffraction enhanced X-ray imaging. Phys Med Biol 42:2015–2025, 1997PubMedCrossRef Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D: Diffraction enhanced X-ray imaging. Phys Med Biol 42:2015–2025, 1997PubMedCrossRef
16.
go back to reference Bravin A: Exploiting the X-ray refraction contrast with an analyser: the state of the art. J Phys D: Appl Phys 36:24–29, 2003CrossRef Bravin A: Exploiting the X-ray refraction contrast with an analyser: the state of the art. J Phys D: Appl Phys 36:24–29, 2003CrossRef
17.
go back to reference Coan P, Wagner A, Bravin A, Diemoz PC, Keyriläinen J, Mollenhauer J: In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs. Phys Med Biol 55:7649–7662, 2010PubMedCrossRef Coan P, Wagner A, Bravin A, Diemoz PC, Keyriläinen J, Mollenhauer J: In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs. Phys Med Biol 55:7649–7662, 2010PubMedCrossRef
18.
go back to reference Benninghoff A: Form und bau der gelenkknorpel in ihren beziehungen zur function. ii. der aufbau des gelenkknorpels in seinen beziehungen zur function. Cell Tissue Res 2:783–862, 1925 Benninghoff A: Form und bau der gelenkknorpel in ihren beziehungen zur function. ii. der aufbau des gelenkknorpels in seinen beziehungen zur function. Cell Tissue Res 2:783–862, 1925
19.
go back to reference Jamitzky F, Stark W, Bunk W, Thalhammer S, Raeth C, Aschenbrenner T, Morfill G, Heckl W: Scaling-index method as an image processing tool in scanning-probe microscopy. Ultramicroscopy 86:241–246, 2000CrossRef Jamitzky F, Stark W, Bunk W, Thalhammer S, Raeth C, Aschenbrenner T, Morfill G, Heckl W: Scaling-index method as an image processing tool in scanning-probe microscopy. Ultramicroscopy 86:241–246, 2000CrossRef
20.
go back to reference Boehm HF, Raeth C, Monetti RA, Mueller D, Newitt D, Majumdar S, Rummeny E, Morfill G, Link TM: Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro. Invest Radiol 38:269–280, 2003PubMed Boehm HF, Raeth C, Monetti RA, Mueller D, Newitt D, Majumdar S, Rummeny E, Morfill G, Link TM: Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro. Invest Radiol 38:269–280, 2003PubMed
21.
go back to reference Huber MB, Lancianese SL, Nagarajan MB, Ikpot IZ, Lerner AL, Wismüller A: Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Trans Biomed Eng 58:1820–1826, 2011PubMedCrossRef Huber MB, Lancianese SL, Nagarajan MB, Ikpot IZ, Lerner AL, Wismüller A: Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Trans Biomed Eng 58:1820–1826, 2011PubMedCrossRef
22.
go back to reference Raeth C, Bunk W, Huber MB, Morfill GE, Retzlaff J, Schuecker P: Analysing large scale structure: I. Weighted scaling indices and constrained randomization. Mon Not R Astron Soc 337:413–421, 2002CrossRef Raeth C, Bunk W, Huber MB, Morfill GE, Retzlaff J, Schuecker P: Analysing large scale structure: I. Weighted scaling indices and constrained randomization. Mon Not R Astron Soc 337:413–421, 2002CrossRef
23.
go back to reference Haralick RM, Shanmuga K, Dinstein I: Textural features for image classification. IEEE Trans Sys Man Cybern Smc 3:610–621, 1973CrossRef Haralick RM, Shanmuga K, Dinstein I: Textural features for image classification. IEEE Trans Sys Man Cybern Smc 3:610–621, 1973CrossRef
24.
go back to reference Huber MB, Nagarajan MB, Leinsinger G, Eibel R, Ray L, Wismüller A: Performance of topological texture features to classify fibrotic interstitial lung disease patterns. Med Phys 38:2035–2044, 2011PubMedCrossRef Huber MB, Nagarajan MB, Leinsinger G, Eibel R, Ray L, Wismüller A: Performance of topological texture features to classify fibrotic interstitial lung disease patterns. Med Phys 38:2035–2044, 2011PubMedCrossRef
25.
go back to reference Korfiatis P, Kalogeropoulou C, Karahaliou A, Kazantzi A, Skiadopoulos S, Costaridoua L: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Med Phys 35:5290–5302, 2008PubMedCrossRef Korfiatis P, Kalogeropoulou C, Karahaliou A, Kazantzi A, Skiadopoulos S, Costaridoua L: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Med Phys 35:5290–5302, 2008PubMedCrossRef
26.
go back to reference Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571, 2007PubMedCrossRef Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571, 2007PubMedCrossRef
27.
go back to reference Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A: Classification of small lesions on breast MRI: Evaluating the role of dynamically extracted texture features through feature selection. J Med Biol Eng 33(1):59–68, 2013CrossRef Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A: Classification of small lesions on breast MRI: Evaluating the role of dynamically extracted texture features through feature selection. J Med Biol Eng 33(1):59–68, 2013CrossRef
28.
go back to reference Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A: Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement. Mach Vision Appl, doi:10.1007/s00138-012-0456-y, 2012 Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A: Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement. Mach Vision Appl, doi:10.​1007/​s00138-012-0456-y, 2012
29.
go back to reference Drucker H, Burges C, Kaufman L, Smola A, Vapnik V: Support vector regression machines. Adv Neural Inf Process Syst 9:155–161, 1996 Drucker H, Burges C, Kaufman L, Smola A, Vapnik V: Support vector regression machines. Adv Neural Inf Process Syst 9:155–161, 1996
30.
go back to reference Fiedler S, Bravin A, Keyriläinen J, Fernández M, Suortti P, Thomlinson W, Tenhunen M, Virkkunen P, Karjalainen-Lindsberg M: Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT. Phys Med Biol 49:175–188, 2004PubMedCrossRef Fiedler S, Bravin A, Keyriläinen J, Fernández M, Suortti P, Thomlinson W, Tenhunen M, Virkkunen P, Karjalainen-Lindsberg M: Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT. Phys Med Biol 49:175–188, 2004PubMedCrossRef
31.
go back to reference Coan P, Peterzol A, Fiedler S, Ponchut C, Labiche J, Bravin A: Evaluation of imaging performance of a taper optics CCD ‘FReLoN’ camera designed for medical imaging. J Synchrotron Radiat 13:260–270, 2006PubMedCrossRef Coan P, Peterzol A, Fiedler S, Ponchut C, Labiche J, Bravin A: Evaluation of imaging performance of a taper optics CCD ‘FReLoN’ camera designed for medical imaging. J Synchrotron Radiat 13:260–270, 2006PubMedCrossRef
32.
go back to reference Dilmanian F, Zhong Z, Ren B, Wu X, Chapman L, Orion I, Thomlinson W: Computed tomography of X-ray index of refraction using the diffraction enhanced imaging method. Phys Med Biol 45:933–946, 2000PubMedCrossRef Dilmanian F, Zhong Z, Ren B, Wu X, Chapman L, Orion I, Thomlinson W: Computed tomography of X-ray index of refraction using the diffraction enhanced imaging method. Phys Med Biol 45:933–946, 2000PubMedCrossRef
33.
go back to reference Anys H, He D: Evaluation of textural and multipolarization radar features for crop classification. IEEE Trans Geosci Remote Sens 33:1170–1181, 1995CrossRef Anys H, He D: Evaluation of textural and multipolarization radar features for crop classification. IEEE Trans Geosci Remote Sens 33:1170–1181, 1995CrossRef
35.
go back to reference Wright SP: Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013, 1992CrossRef Wright SP: Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013, 1992CrossRef
36.
go back to reference Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70, 1979 Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70, 1979
37.
go back to reference Hirai T, Yamada H, Sasaki M, Hasegawa D, Morita M, Oda Y, Takaku J, Hanashima T, Nitta N, Takahashi M, Murata K: Refraction contrast 11×-magnified X-ray imaging of large objects by MIRRORCLE-type table-top synchrotron. J Synchrotron Radiat 13:397–402, 2006PubMedCrossRef Hirai T, Yamada H, Sasaki M, Hasegawa D, Morita M, Oda Y, Takaku J, Hanashima T, Nitta N, Takahashi M, Murata K: Refraction contrast 11×-magnified X-ray imaging of large objects by MIRRORCLE-type table-top synchrotron. J Synchrotron Radiat 13:397–402, 2006PubMedCrossRef
38.
go back to reference Grüner F, Becker S, Schramm U, Eichner T, Fuchs M, Weingartner R, Habs D, Meyer-ter Vehn J, Geissler M, Ferrario M, Serafini L, van der Geer B, Backe H, Lauth W, Reiche S: Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl Phys B 86(3):431–435, 2007CrossRef Grüner F, Becker S, Schramm U, Eichner T, Fuchs M, Weingartner R, Habs D, Meyer-ter Vehn J, Geissler M, Ferrario M, Serafini L, van der Geer B, Backe H, Lauth W, Reiche S: Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl Phys B 86(3):431–435, 2007CrossRef
39.
go back to reference Habs D, Hegelich M, Schreiber J, Gross M, Henig A, Kiefer D, Jung D: Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Appl Phys 93(2–3):349–354, 2008CrossRef Habs D, Hegelich M, Schreiber J, Gross M, Henig A, Kiefer D, Jung D: Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Appl Phys 93(2–3):349–354, 2008CrossRef
Metadata
Title
Computer-Aided Diagnosis for Phase-Contrast X-ray Computed Tomography: Quantitative Characterization of Human Patellar Cartilage with High-Dimensional Geometric Features
Authors
Mahesh B. Nagarajan
Paola Coan
Markus B. Huber
Paul C. Diemoz
Christian Glaser
Axel Wismüller
Publication date
01-02-2014
Publisher
Springer US
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2014
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-013-9634-3

Other articles of this Issue 1/2014

Journal of Digital Imaging 1/2014 Go to the issue