Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2013

Open Access 01-12-2013 | Research article

Computational repositioning of ethno medicine elucidated gB-gH-gL complex as novel anti herpes drug target

Authors: Syed Hussain Basha, Deepthi Talluri, Nalini Prasad Raminni

Published in: BMC Complementary Medicine and Therapies | Issue 1/2013

Login to get access

Abstract

Background

Herpes viruses are important human pathogens that can cause mild to severe lifelong infections with high morbidity. They remain latent in the host cells and can cause recurrent infections that might prove fatal. These viruses are known to infect the host cells by causing the fusion of viral and host cell membrane proteins. Fusion is achieved with the help of conserved fusion machinery components, glycoproteins gB, heterodimer gH-gL complex along with other non-conserved components. Whereas, another important glycoprotein gD without which viral entry to the cell is not possible, acts as a co-activator for the gB-gH-gL complex formation. Thus, this complex formation interface is the most promising drug target for the development of novel anti-herpes drug candidates. In the present study, we propose a model for binding of gH-gL to gB glycoprotein leading from pre to post conformational changes during gB-gH-gL complex formation and reported the key residues involved in this binding activity along with possible binding site locations. To validate the drug targetability of our proposed binding site, we have repositioned some of the most promising in vitro, in vivo validated anti-herpes molecules onto the proposed binding site of gH-gL complex in a computational approach.

Methods

Hex 6.3 standalone software was used for protein-protein docking studies. Arguslab 4.0.1 and Accelrys® Discovery Studio 3.1 Visualizer softwares were used for semi-flexible docking studies and visualizing the interactions respectively. Protein receptors and ethno compounds were retrieved from Protein Data Bank (PDB) and Pubchem databases respectively. Lipinski’s Filter, Osiris Property Explorer and Lazar online servers were used to check the pharmaceutical fidelity of the drug candidates.

Results

Through protein-protein docking studies, it was identified that the amino acid residues VAL342, GLU347, SER349, TYR355, SER388, ASN395, HIS398 and ALA387 of gH-gL complex play an active role in its binding activity with gB. Semi flexible docking analysis of the most promising in vitro, in vivo validated anti-herpes molecules targeting the above mentioned key residues of gH-gL complex showed that all the analyzed ethno medicinal compounds have successfully docked into the proposed binding site of gH-gL glycoprotein with binding energy range between -10.4 to -6.4 K.cal./mol.

Conclusions

Successful repositioning of the analyzed compounds onto the proposed binding site confirms the drug targetability of gH-gL complex. Based on the free binding energy and pharmacological properties, we propose (3-chloro phenyl) methyl-3,4,5 trihydroxybenzoate as worth a small ethno medicinal lead molecule for further development as potent anti-herpes drug candidate targeting gB-gH-gL complex formation interface.
Appendix
Available only for authorised users
Literature
1.
go back to reference Prevention and control of Herpes virus diseases. Clinical and laboratory diagnosis and chemotherapy. Volume 63. 1985, Bulletin of the WHO, 182-185. Prevention and control of Herpes virus diseases. Clinical and laboratory diagnosis and chemotherapy. Volume 63. 1985, Bulletin of the WHO, 182-185.
2.
go back to reference Whitley RJ: Herpes simplex viruses. Fields Virology. Edited by: Knipe DM, Howley PM. 2001, Philadelphia: Lippincott, Williams and Wilkins, 2461-2509. Whitley RJ: Herpes simplex viruses. Fields Virology. Edited by: Knipe DM, Howley PM. 2001, Philadelphia: Lippincott, Williams and Wilkins, 2461-2509.
3.
go back to reference Wild K, Bohner T, Folkers G, Schulz GE: The structures of thymidine kinase from Herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci. 1997, 6: 2097-2106.CrossRefPubMedPubMedCentral Wild K, Bohner T, Folkers G, Schulz GE: The structures of thymidine kinase from Herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci. 1997, 6: 2097-2106.CrossRefPubMedPubMedCentral
4.
go back to reference Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC: Crystal structure of glycoprotein B from Herpes simplex virus-1. Science. 2006, 313: 217-220. 10.1126/science.1126548.CrossRefPubMed Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC: Crystal structure of glycoprotein B from Herpes simplex virus-1. Science. 2006, 313: 217-220. 10.1126/science.1126548.CrossRefPubMed
5.
go back to reference Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE: Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol. 2010, 17 (7): 882-888. 10.1038/nsmb.1837.CrossRefPubMedPubMedCentral Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE: Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol. 2010, 17 (7): 882-888. 10.1038/nsmb.1837.CrossRefPubMedPubMedCentral
6.
go back to reference Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ, Cohen GH, Wiley DC, Carfí A: Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J. 2005, 24: 4144-4153. 10.1038/sj.emboj.7600875.CrossRefPubMedPubMedCentral Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ, Cohen GH, Wiley DC, Carfí A: Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J. 2005, 24: 4144-4153. 10.1038/sj.emboj.7600875.CrossRefPubMedPubMedCentral
7.
go back to reference Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH: Herpes Virus Fusion and Entry: A Story with Many Characters. Review, Viruses. 2012, 4: 800-832. 10.3390/v4050800.CrossRef Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH: Herpes Virus Fusion and Entry: A Story with Many Characters. Review, Viruses. 2012, 4: 800-832. 10.3390/v4050800.CrossRef
8.
9.
10.
go back to reference Grifo F, Rosenthal J: Biodiversity and human health. 1997, Washington DC, USA: Island Press Grifo F, Rosenthal J: Biodiversity and human health. 1997, Washington DC, USA: Island Press
11.
go back to reference Debprasad C, Sonali D, Sekhar C, Bhattacharya SK: Ethnomedicines for the development of anti-herpesvirus agents. Ethnomedicine: A Source of Complementary Therapeutics. 2010, 117-147. Debprasad C, Sonali D, Sekhar C, Bhattacharya SK: Ethnomedicines for the development of anti-herpesvirus agents. Ethnomedicine: A Source of Complementary Therapeutics. 2010, 117-147.
12.
go back to reference Bernstein FC, Koetzle TF, Williams GJ, Meyer EE, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M: The Protein Data Bank: A Computer-based Archival File For Macromolecular Structures. J Mol Biol. 1977, 112: 535-10.1016/S0022-2836(77)80200-3.CrossRefPubMed Bernstein FC, Koetzle TF, Williams GJ, Meyer EE, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M: The Protein Data Bank: A Computer-based Archival File For Macromolecular Structures. J Mol Biol. 1977, 112: 535-10.1016/S0022-2836(77)80200-3.CrossRefPubMed
13.
go back to reference Hussain Basha S, Prasad RN: In-Silico screening of Pleconaril and its novel substituted derivatives with Neuraminidase of H1N1 Influenza strain. BMC Research Notes. 2012, 5: 105-10.1186/1756-0500-5-105.CrossRefPubMedPubMedCentral Hussain Basha S, Prasad RN: In-Silico screening of Pleconaril and its novel substituted derivatives with Neuraminidase of H1N1 Influenza strain. BMC Research Notes. 2012, 5: 105-10.1186/1756-0500-5-105.CrossRefPubMedPubMedCentral
14.
go back to reference Bolton E, Wang Y, Thiessen PA, Bryant SH: PubChem: Integrated Platform of Small Molecules and Biological Activities. Chapter 12. Annual Reports in Computational Chemistry, Volume 4. 2008, Washington, DC: American Chemical Society Bolton E, Wang Y, Thiessen PA, Bryant SH: PubChem: Integrated Platform of Small Molecules and Biological Activities. Chapter 12. Annual Reports in Computational Chemistry, Volume 4. 2008, Washington, DC: American Chemical Society
16.
go back to reference Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992, 114: 10024-10035. 10.1021/ja00051a040.CrossRef Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992, 114: 10024-10035. 10.1021/ja00051a040.CrossRef
17.
go back to reference Rappe AK, Colwell KS, Casewit CJ: Application of a Universal force field to metal complexes. Inorg Chem. 1993, 32: 3438-3450. 10.1021/ic00068a012.CrossRef Rappe AK, Colwell KS, Casewit CJ: Application of a Universal force field to metal complexes. Inorg Chem. 1993, 32: 3438-3450. 10.1021/ic00068a012.CrossRef
18.
go back to reference Rappe AK, Goddard WA: Charge Equilibration for molecular dyanamics simulations. J Phys Chem. 1991, 95: 3358-3363. 10.1021/j100161a070.CrossRef Rappe AK, Goddard WA: Charge Equilibration for molecular dyanamics simulations. J Phys Chem. 1991, 95: 3358-3363. 10.1021/j100161a070.CrossRef
19.
go back to reference Casewit CJ, Colwell KS, Rappe’ AK: Application of a universal force field to organic molecules. J Am Chem Soc. 1992, 114: 10035-10046. 10.1021/ja00051a041.CrossRef Casewit CJ, Colwell KS, Rappe’ AK: Application of a universal force field to organic molecules. J Am Chem Soc. 1992, 114: 10035-10046. 10.1021/ja00051a041.CrossRef
20.
go back to reference Casewit CJ, Colwell KS, Rappe’ AK: Application of a universal force field to main group compounds. J Am Chem Soc. 1992, 114: 10046-10053. 10.1021/ja00051a042.CrossRef Casewit CJ, Colwell KS, Rappe’ AK: Application of a universal force field to main group compounds. J Am Chem Soc. 1992, 114: 10046-10053. 10.1021/ja00051a042.CrossRef
21.
go back to reference Ritchie DW: Recent progress and future directions in protein-protein docking. Curr Prot Pep Sci. 2008, 9 (1): 1-15. 10.2174/138920308783565741.CrossRef Ritchie DW: Recent progress and future directions in protein-protein docking. Curr Prot Pep Sci. 2008, 9 (1): 1-15. 10.2174/138920308783565741.CrossRef
23.
go back to reference Doina A, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ: Bimolecular Complementation Defines Functional Regions of Herpes Simplex Virus gB that Are Involved with gH/gL as a Necessary Step Leading to Cell Fusion. J Virol. 2010, 84 (8): 3825-3834. 10.1128/JVI.02687-09.CrossRef Doina A, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ: Bimolecular Complementation Defines Functional Regions of Herpes Simplex Virus gB that Are Involved with gH/gL as a Necessary Step Leading to Cell Fusion. J Virol. 2010, 84 (8): 3825-3834. 10.1128/JVI.02687-09.CrossRef
24.
go back to reference Hussain Basha S, Naresh Kumar K: Ligand and Structure based virtual screening studies to identify potent inhibitors against herpes virus targeting gB-gH-gL complex interface as a novel drug target. Open access sci rep. 2012, 1 (12): 566- Hussain Basha S, Naresh Kumar K: Ligand and Structure based virtual screening studies to identify potent inhibitors against herpes virus targeting gB-gH-gL complex interface as a novel drug target. Open access sci rep. 2012, 1 (12): 566-
Metadata
Title
Computational repositioning of ethno medicine elucidated gB-gH-gL complex as novel anti herpes drug target
Authors
Syed Hussain Basha
Deepthi Talluri
Nalini Prasad Raminni
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2013
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-13-85

Other articles of this Issue 1/2013

BMC Complementary Medicine and Therapies 1/2013 Go to the issue