Skip to main content
Top
Published in: Molecular Brain 1/2014

Open Access 01-12-2014 | Research

Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes

Authors: Ryuta Fujioka, Takenobu Nii, Akiko Iwaki, Atsushi Shibata, Isao Ito, Kiyoyuki Kitaichi, Masatoshi Nomura, Satoko Hattori, Keizo Takao, Tsuyoshi Miyakawa, Yasuyuki Fukumaki

Published in: Molecular Brain | Issue 1/2014

Login to get access

Abstract

Background

We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved.

Results

We generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice.

Conclusions

These results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meldrum BS: Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000, 130: 1007S-1015S.PubMed Meldrum BS: Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000, 130: 1007S-1015S.PubMed
2.
go back to reference Conn PJ, Pin JP: Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997, 37: 205-237. 10.1146/annurev.pharmtox.37.1.205.PubMedCrossRef Conn PJ, Pin JP: Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997, 37: 205-237. 10.1146/annurev.pharmtox.37.1.205.PubMedCrossRef
3.
go back to reference Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S: A family of metabotropic glutamate receptors. Neuron. 1992, 8: 169-179. 10.1016/0896-6273(92)90118-W.PubMedCrossRef Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S: A family of metabotropic glutamate receptors. Neuron. 1992, 8: 169-179. 10.1016/0896-6273(92)90118-W.PubMedCrossRef
4.
go back to reference De Blasi A, Conn PJ, Pin JP, Nicoletti F: Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci. 2001, 22: 114-120. 10.1016/S0165-6147(00)01635-7.PubMedCrossRef De Blasi A, Conn PJ, Pin JP, Nicoletti F: Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci. 2001, 22: 114-120. 10.1016/S0165-6147(00)01635-7.PubMedCrossRef
5.
go back to reference Harrison PJ, Lyon L, Sartorius LJ, Burnet PW, Lane TA: The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. Psychopharmacology. 2008, 22: 308-322. 10.1177/0269881108089818.CrossRef Harrison PJ, Lyon L, Sartorius LJ, Burnet PW, Lane TA: The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. Psychopharmacology. 2008, 22: 308-322. 10.1177/0269881108089818.CrossRef
6.
go back to reference Anwyl R: Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev. 1999, 29: 83-120. 10.1016/S0165-0173(98)00050-2.PubMedCrossRef Anwyl R: Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev. 1999, 29: 83-120. 10.1016/S0165-0173(98)00050-2.PubMedCrossRef
7.
go back to reference Lea PM, Wroblewska B, Sarvey JM, Neale JH: Beta-NAAG rescues LTP from blockade by NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor. J Neurophysiol. 2001, 85: 1097-1106.PubMed Lea PM, Wroblewska B, Sarvey JM, Neale JH: Beta-NAAG rescues LTP from blockade by NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor. J Neurophysiol. 2001, 85: 1097-1106.PubMed
8.
go back to reference Pöschel B, Wroblewska B, Heinemann U, Manahan-Vaughan D: The metabotropic glutamate receptor mGluR3 in critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats. Cereb Cortex. 2005, 15: 1414-1423.PubMedCrossRef Pöschel B, Wroblewska B, Heinemann U, Manahan-Vaughan D: The metabotropic glutamate receptor mGluR3 in critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats. Cereb Cortex. 2005, 15: 1414-1423.PubMedCrossRef
9.
go back to reference Cartmell J, Schoepp DD: Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000, 75: 889-907.PubMedCrossRef Cartmell J, Schoepp DD: Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000, 75: 889-907.PubMedCrossRef
10.
go back to reference Javitt DC: Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004, 9: 984-997. 10.1038/sj.mp.4001551.PubMedCrossRef Javitt DC: Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004, 9: 984-997. 10.1038/sj.mp.4001551.PubMedCrossRef
11.
go back to reference Javitt DC, Zukin SR: Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991, 148: 1301-1308.PubMedCrossRef Javitt DC, Zukin SR: Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991, 148: 1301-1308.PubMedCrossRef
12.
go back to reference Moghaddam B, Adams BW: Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998, 281: 1349-1352.PubMedCrossRef Moghaddam B, Adams BW: Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998, 281: 1349-1352.PubMedCrossRef
13.
go back to reference Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y: Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet. 2003, 13: 71-76.PubMed Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y: Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet. 2003, 13: 71-76.PubMed
14.
go back to reference Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR: Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A. 2004, 101: 12604-12609. 10.1073/pnas.0405077101.PubMedPubMedCentralCrossRef Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, Akil M, Crook J, Vakkalanka RK, Balkissoon R, Gibbs RA, Kleinman JE, Weinberger DR: Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A. 2004, 101: 12604-12609. 10.1073/pnas.0405077101.PubMedPubMedCentralCrossRef
15.
go back to reference Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L: A case–control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res. 2005, 73: 21-26. 10.1016/j.schres.2004.07.002.PubMedCrossRef Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L: A case–control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res. 2005, 73: 21-26. 10.1016/j.schres.2004.07.002.PubMedCrossRef
16.
go back to reference Nicodemus KK, Kolachana BS, Vakkalanka R, Straub RE, Giegling I, Egan MF, Rujescu D, Weinberger DR: Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum Genet. 2007, 120: 889-906. 10.1007/s00439-006-0257-3.PubMedCrossRef Nicodemus KK, Kolachana BS, Vakkalanka R, Straub RE, Giegling I, Egan MF, Rujescu D, Weinberger DR: Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum Genet. 2007, 120: 889-906. 10.1007/s00439-006-0257-3.PubMedCrossRef
17.
go back to reference Mössner R, Schuhmacher A, Schulze-Rauschenbach S, Kühn KU, Rujescu D, Rietschel M, Zobel A, Franke P, Wölwer W, Gaebel W, Häfner H, Wagner M, Maier W: Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur Neuropsychopharmacol. 2008, 18: 768-772. 10.1016/j.euroneuro.2008.05.007.PubMedCrossRef Mössner R, Schuhmacher A, Schulze-Rauschenbach S, Kühn KU, Rujescu D, Rietschel M, Zobel A, Franke P, Wölwer W, Gaebel W, Häfner H, Wagner M, Maier W: Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur Neuropsychopharmacol. 2008, 18: 768-772. 10.1016/j.euroneuro.2008.05.007.PubMedCrossRef
18.
go back to reference Norton N, Williams HJ, Dwyer S, Ivanov D, Preece AC, Gerrish A, Williams NM, Yerassimou P, Zammit S, O’Donovan MC, Owen MJ: No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatr. 2005, 5: e23-10.1186/1471-244X-5-23.CrossRef Norton N, Williams HJ, Dwyer S, Ivanov D, Preece AC, Gerrish A, Williams NM, Yerassimou P, Zammit S, O’Donovan MC, Owen MJ: No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatr. 2005, 5: e23-10.1186/1471-244X-5-23.CrossRef
19.
go back to reference Schwab SG, Plummer C, Albus M, Borrmann-Hassenbach M, Lerer B, Trixler M, Maier W, Wildenauer DB: DNA sequence variants in the metabotropic glutamate receptor 3 and risk to schizophrenia: an association study. Psychiatr Genet. 2008, 18: 25-30. 10.1097/YPG.0b013e3282ef48d9.PubMedCrossRef Schwab SG, Plummer C, Albus M, Borrmann-Hassenbach M, Lerer B, Trixler M, Maier W, Wildenauer DB: DNA sequence variants in the metabotropic glutamate receptor 3 and risk to schizophrenia: an association study. Psychiatr Genet. 2008, 18: 25-30. 10.1097/YPG.0b013e3282ef48d9.PubMedCrossRef
20.
go back to reference Albalushi T, Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, Ujike H, Watanabe Y, Someya T, Arinami T: Replication study and meta-analysis of the genetic association of GRM3 gene polymorphisms with schizophrenia in a large Japanese case–control population. Am J Med Genet B Neuropsychiatr Genet. 2008, 147: 392-396.PubMedCrossRef Albalushi T, Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, Ujike H, Watanabe Y, Someya T, Arinami T: Replication study and meta-analysis of the genetic association of GRM3 gene polymorphisms with schizophrenia in a large Japanese case–control population. Am J Med Genet B Neuropsychiatr Genet. 2008, 147: 392-396.PubMedCrossRef
21.
go back to reference Takao K, Tanda K, Nakamura K, Kasahara J, Nakao K, Katsuki M, Nakanishi K, Yamasaki N, Toyama K, Adachi M, Umeda M, Araki T, Fukunaga K, Kondo H, Sakagami H, Miyakawa T: Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice. PLoS One. 2010, 5 (3): e9460-10.1371/journal.pone.0009460.PubMedPubMedCentralCrossRef Takao K, Tanda K, Nakamura K, Kasahara J, Nakao K, Katsuki M, Nakanishi K, Yamasaki N, Toyama K, Adachi M, Umeda M, Araki T, Fukunaga K, Kondo H, Sakagami H, Miyakawa T: Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice. PLoS One. 2010, 5 (3): e9460-10.1371/journal.pone.0009460.PubMedPubMedCentralCrossRef
22.
go back to reference Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y: Comprehensive behavioral study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav. 2010, 9: 899-909. 10.1111/j.1601-183X.2010.00629.x.PubMedCrossRef Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y: Comprehensive behavioral study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav. 2010, 9: 899-909. 10.1111/j.1601-183X.2010.00629.x.PubMedCrossRef
23.
go back to reference Geyer MA, Ellenbroek B: Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27: 1071-1079. 10.1016/j.pnpbp.2003.09.003.PubMedCrossRef Geyer MA, Ellenbroek B: Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27: 1071-1079. 10.1016/j.pnpbp.2003.09.003.PubMedCrossRef
24.
go back to reference Arguello PA, Gogos JA: Modeling madness in mice: one piece at a time. Neuron. 2006, 52: 179-196. 10.1016/j.neuron.2006.09.023.PubMedCrossRef Arguello PA, Gogos JA: Modeling madness in mice: one piece at a time. Neuron. 2006, 52: 179-196. 10.1016/j.neuron.2006.09.023.PubMedCrossRef
25.
go back to reference Gainetdinov RR, Mohn AR, Caron MG: Genetic animal models: focus on schizophrenia. Trends Neurosci. 2001, 24: 527-533. 10.1016/S0166-2236(00)01886-5.PubMedCrossRef Gainetdinov RR, Mohn AR, Caron MG: Genetic animal models: focus on schizophrenia. Trends Neurosci. 2001, 24: 527-533. 10.1016/S0166-2236(00)01886-5.PubMedCrossRef
26.
go back to reference Gottesman II, Gould TD: The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003, 160: 636-645. 10.1176/appi.ajp.160.4.636.PubMedCrossRef Gottesman II, Gould TD: The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003, 160: 636-645. 10.1176/appi.ajp.160.4.636.PubMedCrossRef
27.
go back to reference Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, Siegel SJ: Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull. 2010, 83: 147-161. 10.1016/j.brainresbull.2010.04.008.PubMedCrossRef Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, Siegel SJ: Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull. 2010, 83: 147-161. 10.1016/j.brainresbull.2010.04.008.PubMedCrossRef
28.
go back to reference Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P, The International Schizophrenia Consortium: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009, 460: 748-752.PubMed Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P, The International Schizophrenia Consortium: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009, 460: 748-752.PubMed
29.
go back to reference Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S: Impairement of hippocampal mossy fiber LTD in mice lacking mGluR2. Science. 1996, 273: 645-647. 10.1126/science.273.5275.645.PubMedCrossRef Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S: Impairement of hippocampal mossy fiber LTD in mice lacking mGluR2. Science. 1996, 273: 645-647. 10.1126/science.273.5275.645.PubMedCrossRef
30.
go back to reference Ikegami M, Uemura T, Kishioka A, Sakimura K, Mishina M: Striatal dopamine D1 receptor is essential for contextual fear conditioning. Sci Rep. 2014, 4: e3976- Ikegami M, Uemura T, Kishioka A, Sakimura K, Mishina M: Striatal dopamine D1 receptor is essential for contextual fear conditioning. Sci Rep. 2014, 4: e3976-
31.
go back to reference Morishima Y, Miyakawa T, Furuyashiki T, Tanaka Y, Mizuma H, Nakanishi S: Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc Natl Acad Sci U S A. 2005, 102: 4170-4175. 10.1073/pnas.0500914102.PubMedPubMedCentralCrossRef Morishima Y, Miyakawa T, Furuyashiki T, Tanaka Y, Mizuma H, Nakanishi S: Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc Natl Acad Sci U S A. 2005, 102: 4170-4175. 10.1073/pnas.0500914102.PubMedPubMedCentralCrossRef
32.
go back to reference Seeman P, Battaglia G, Corti C, Corsi M, Bruno V: Glutamate receptor mGlu2 and mGlu3 knockout striata are dopamine supersensitive, with elevated D2(High) receptors and marked supersensitivity to the dopamine agonist (+)PHNO. Synapse. 2009, 63: 247-251. 10.1002/syn.20607.PubMedCrossRef Seeman P, Battaglia G, Corti C, Corsi M, Bruno V: Glutamate receptor mGlu2 and mGlu3 knockout striata are dopamine supersensitive, with elevated D2(High) receptors and marked supersensitivity to the dopamine agonist (+)PHNO. Synapse. 2009, 63: 247-251. 10.1002/syn.20607.PubMedCrossRef
33.
go back to reference Del Arco A, Mora F: Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav. 2008, 90: 226-325. 10.1016/j.pbb.2008.04.011.PubMedCrossRef Del Arco A, Mora F: Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav. 2008, 90: 226-325. 10.1016/j.pbb.2008.04.011.PubMedCrossRef
34.
go back to reference Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V: The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci. 2007, 27: 8297-8308. 10.1523/JNEUROSCI.1889-07.2007.PubMedCrossRef Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V: The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci. 2007, 27: 8297-8308. 10.1523/JNEUROSCI.1889-07.2007.PubMedCrossRef
35.
go back to reference Takao K, Miyakawa T: Light/dark transition test for mice. J Vis Exp. 2006, 1: e104- Takao K, Miyakawa T: Light/dark transition test for mice. J Vis Exp. 2006, 1: e104-
36.
go back to reference Komine Y, Takao K, Miyakawa T, Yamamori T: Behavioral abnormalities observed in Zfhx2-deficient mice. PLoS One. 2012, 7 (12): e53114-10.1371/journal.pone.0053114.PubMedPubMedCentralCrossRef Komine Y, Takao K, Miyakawa T, Yamamori T: Behavioral abnormalities observed in Zfhx2-deficient mice. PLoS One. 2012, 7 (12): e53114-10.1371/journal.pone.0053114.PubMedPubMedCentralCrossRef
37.
go back to reference Shoji H, Hagihara H, Takao K, Hattori S, Miyakawa T: T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in mice. J Vis Exp. 2012, 60: e3300- Shoji H, Hagihara H, Takao K, Hattori S, Miyakawa T: T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in mice. J Vis Exp. 2012, 60: e3300-
38.
go back to reference Miyakawa T, Yamada M, Duttaroy A, Wess J: Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci. 2001, 21: 5239-5250.PubMed Miyakawa T, Yamada M, Duttaroy A, Wess J: Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci. 2001, 21: 5239-5250.PubMed
39.
go back to reference Yao I, Takao K, Miyakawa T, Ito S, Setou M: Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice. PLoS One. 2011, 6 (2): e17317-10.1371/journal.pone.0017317.PubMedPubMedCentralCrossRef Yao I, Takao K, Miyakawa T, Ito S, Setou M: Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice. PLoS One. 2011, 6 (2): e17317-10.1371/journal.pone.0017317.PubMedPubMedCentralCrossRef
40.
go back to reference Komada M, Takao K, Miyakawa T: Elevated plus maze for mice. J Vis Exp. 2008, 22: e1088- Komada M, Takao K, Miyakawa T: Elevated plus maze for mice. J Vis Exp. 2008, 22: e1088-
41.
go back to reference Ito I, Kawakami R, Sakimura K, Mishina M, Sugiyama H: Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology. 2000, 39: 943-951. 10.1016/S0028-3908(99)00217-8.PubMedCrossRef Ito I, Kawakami R, Sakimura K, Mishina M, Sugiyama H: Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology. 2000, 39: 943-951. 10.1016/S0028-3908(99)00217-8.PubMedCrossRef
42.
go back to reference Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I: Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science. 2003, 300: 990-994. 10.1126/science.1082609.PubMedCrossRef Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I: Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science. 2003, 300: 990-994. 10.1126/science.1082609.PubMedCrossRef
43.
go back to reference Sakae N, Yamasaki N, Kitaichi K, Fukuda T, Yamada M, Yoshikawa H, Hiranita T, Tatsumi Y, Kira J, Yamamoto T, Miyakawa T, Nakayama K: Mice lacking the schizophrenia-associated protein FEZ1 manifest hyperactivity and enhanced responsiveness to psychostimulants. Hum Mol Genet. 2008, 17: 3191-3203. 10.1093/hmg/ddn215.PubMedCrossRef Sakae N, Yamasaki N, Kitaichi K, Fukuda T, Yamada M, Yoshikawa H, Hiranita T, Tatsumi Y, Kira J, Yamamoto T, Miyakawa T, Nakayama K: Mice lacking the schizophrenia-associated protein FEZ1 manifest hyperactivity and enhanced responsiveness to psychostimulants. Hum Mol Genet. 2008, 17: 3191-3203. 10.1093/hmg/ddn215.PubMedCrossRef
44.
go back to reference Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T: Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci. 2010, 4: e29- Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T: Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci. 2010, 4: e29-
45.
go back to reference Hampton TG, Stasko MR, Kale A, Amende I, Costa AC: Gait dynamics in trisomic mice: quantitative neurological traits of Down syndrome. Physiol Behav. 2004, 82: 381-389. 10.1016/j.physbeh.2004.04.006.PubMedCrossRef Hampton TG, Stasko MR, Kale A, Amende I, Costa AC: Gait dynamics in trisomic mice: quantitative neurological traits of Down syndrome. Physiol Behav. 2004, 82: 381-389. 10.1016/j.physbeh.2004.04.006.PubMedCrossRef
Metadata
Title
Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes
Authors
Ryuta Fujioka
Takenobu Nii
Akiko Iwaki
Atsushi Shibata
Isao Ito
Kiyoyuki Kitaichi
Masatoshi Nomura
Satoko Hattori
Keizo Takao
Tsuyoshi Miyakawa
Yasuyuki Fukumaki
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2014
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-7-31

Other articles of this Issue 1/2014

Molecular Brain 1/2014 Go to the issue