Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

Authors: Janette Mareska Rumbajan, Toshiyuki Maeda, Ryota Souzaki, Kazumasa Mitsui, Ken Higashimoto, Kazuhiko Nakabayashi, Hitomi Yatsuki, Kenichi Nishioka, Ryoko Harada, Shigehisa Aoki, Kenichi Kohashi, Yoshinao Oda, Kenichiro Hata, Tsutomu Saji, Tomoaki Taguchi, Tatsuro Tajiri, Hidenobu Soejima, Keiichiro Joh

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors.

Methods

The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms.

Results

Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations.

Conclusions

Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Herzog CE, Andrassy RJ, Eftekhari F: Childhood cancers: hepatoblastoma. Oncologist. 2000, 5 (6): 445-453. 10.1634/theoncologist.5-6-445.CrossRefPubMed Herzog CE, Andrassy RJ, Eftekhari F: Childhood cancers: hepatoblastoma. Oncologist. 2000, 5 (6): 445-453. 10.1634/theoncologist.5-6-445.CrossRefPubMed
2.
go back to reference Tomlinson GE, Kappler R: Genetics and epigenetics of hepatoblastoma. Pediatr Blood Cancer. 2012, 59 (5): 785-792. 10.1002/pbc.24213.CrossRefPubMed Tomlinson GE, Kappler R: Genetics and epigenetics of hepatoblastoma. Pediatr Blood Cancer. 2012, 59 (5): 785-792. 10.1002/pbc.24213.CrossRefPubMed
3.
go back to reference Tomizawa S, Sasaki H: Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet. 2012, 57 (2): 84-91. 10.1038/jhg.2011.151.CrossRefPubMed Tomizawa S, Sasaki H: Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet. 2012, 57 (2): 84-91. 10.1038/jhg.2011.151.CrossRefPubMed
4.
go back to reference Murrell A: Genomic imprinting and cancer: from primordial germ cells to somatic cells. ScientificWorldJournal. 2006, 6: 1888-1910.CrossRefPubMed Murrell A: Genomic imprinting and cancer: from primordial germ cells to somatic cells. ScientificWorldJournal. 2006, 6: 1888-1910.CrossRefPubMed
5.
go back to reference Choufani S, Shuman C, Weksberg R: Beckwith-Wiedemann syndrome. Am J Med Genet C: Semin Med Genet. 2010, 154C (3): 343-354. 10.1002/ajmg.c.30267.CrossRef Choufani S, Shuman C, Weksberg R: Beckwith-Wiedemann syndrome. Am J Med Genet C: Semin Med Genet. 2010, 154C (3): 343-354. 10.1002/ajmg.c.30267.CrossRef
6.
go back to reference Scelfo RA, Schwienbacher C, Veronese A, Gramantieri L, Bolondi L, Querzoli P, Nenci I, Calin GA, Angioni A, Barbanti-Brodano G, et al: Loss of methylation at chromosome 11p15.5 is common in human adult tumors. Oncogene. 2002, 21 (16): 2564-2572. 10.1038/sj.onc.1205336.CrossRefPubMed Scelfo RA, Schwienbacher C, Veronese A, Gramantieri L, Bolondi L, Querzoli P, Nenci I, Calin GA, Angioni A, Barbanti-Brodano G, et al: Loss of methylation at chromosome 11p15.5 is common in human adult tumors. Oncogene. 2002, 21 (16): 2564-2572. 10.1038/sj.onc.1205336.CrossRefPubMed
7.
go back to reference Honda S, Arai Y, Haruta M, Sasaki F, Ohira M, Yamaoka H, Horie H, Nakagawara A, Hiyama E, Todo S, et al: Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer. 2008, 99 (11): 1891-1899. 10.1038/sj.bjc.6604754.CrossRefPubMedPubMedCentral Honda S, Arai Y, Haruta M, Sasaki F, Ohira M, Yamaoka H, Horie H, Nakagawara A, Hiyama E, Todo S, et al: Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer. 2008, 99 (11): 1891-1899. 10.1038/sj.bjc.6604754.CrossRefPubMedPubMedCentral
8.
go back to reference Chitragar S, Iyer VK, Agarwala S, Gupta SD, Sharma A, Wari MN: Loss of heterozygosity on chromosome 11p15.5 and relapse in hepatoblastomas. Eur J Pediatr Surg. 2011, 21 (1): 50-53. 10.1055/s-0030-1267208.CrossRefPubMed Chitragar S, Iyer VK, Agarwala S, Gupta SD, Sharma A, Wari MN: Loss of heterozygosity on chromosome 11p15.5 and relapse in hepatoblastomas. Eur J Pediatr Surg. 2011, 21 (1): 50-53. 10.1055/s-0030-1267208.CrossRefPubMed
9.
go back to reference Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM, Jaenisch R: Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell. 2005, 8 (4): 275-285. 10.1016/j.ccr.2005.09.007.CrossRefPubMed Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM, Jaenisch R: Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell. 2005, 8 (4): 275-285. 10.1016/j.ccr.2005.09.007.CrossRefPubMed
10.
go back to reference Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D: Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A. 2005, 102 (44): 15785-15790. 10.1073/pnas.0507816102.CrossRefPubMedPubMedCentral Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D: Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A. 2005, 102 (44): 15785-15790. 10.1073/pnas.0507816102.CrossRefPubMedPubMedCentral
11.
go back to reference Woodfine K, Huddleston JE, Murrell A: Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue. Epigenetics Chromatin. 2011, 4 (1): 1-10.1186/1756-8935-4-1.CrossRefPubMedPubMedCentral Woodfine K, Huddleston JE, Murrell A: Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue. Epigenetics Chromatin. 2011, 4 (1): 1-10.1186/1756-8935-4-1.CrossRefPubMedPubMedCentral
12.
go back to reference Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, et al: Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67 (3): 876-880. 10.1158/0008-5472.CAN-06-2995.CrossRefPubMed Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, et al: Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67 (3): 876-880. 10.1158/0008-5472.CAN-06-2995.CrossRefPubMed
13.
go back to reference Roebuck DJ, Aronson D, Clapuyt P, Czauderna P, dJe Ville de Goyet J, Gauthier F, Mackinlay G, Maibach R, McHugh K, Olsen OE, et al: 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. Pediatr Radiol. 2007, 37 (2): 123-132. 10.1007/s00247-006-0361-5. quiz 249–150CrossRefPubMed Roebuck DJ, Aronson D, Clapuyt P, Czauderna P, dJe Ville de Goyet J, Gauthier F, Mackinlay G, Maibach R, McHugh K, Olsen OE, et al: 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. Pediatr Radiol. 2007, 37 (2): 123-132. 10.1007/s00247-006-0361-5. quiz 249–150CrossRefPubMed
14.
go back to reference Higashimoto K, Nakabayashi K, Yatsuki H, Yoshinaga H, Jozaki K, Okada J, Watanabe Y, Aoki A, Shiozaki A, Saito S, et al: Aberrant methylation of H19-DMR acquired after implantation was dissimilar in soma versus placenta of patients with Beckwith-Wiedemann syndrome. Am J Med Genet A. 2012, 158A (7): 1670-1675. 10.1002/ajmg.a.35335.CrossRefPubMed Higashimoto K, Nakabayashi K, Yatsuki H, Yoshinaga H, Jozaki K, Okada J, Watanabe Y, Aoki A, Shiozaki A, Saito S, et al: Aberrant methylation of H19-DMR acquired after implantation was dissimilar in soma versus placenta of patients with Beckwith-Wiedemann syndrome. Am J Med Genet A. 2012, 158A (7): 1670-1675. 10.1002/ajmg.a.35335.CrossRefPubMed
15.
go back to reference Tost J, Dunker J, Gut IG: Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques. 2003, 35 (1): 152-156.PubMed Tost J, Dunker J, Gut IG: Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques. 2003, 35 (1): 152-156.PubMed
16.
go back to reference Claus R, Wilop S, Hielscher T, Sonnet M, Dahl E, Galm O, Jost E, Plass C: A systematic comparison of quantitative high-resolution DNA methylation analysis and methylation-specific PCR. Epigenetics. 2012, 7 (7): 772-780. 10.4161/epi.20299.CrossRefPubMedPubMedCentral Claus R, Wilop S, Hielscher T, Sonnet M, Dahl E, Galm O, Jost E, Plass C: A systematic comparison of quantitative high-resolution DNA methylation analysis and methylation-specific PCR. Epigenetics. 2012, 7 (7): 772-780. 10.4161/epi.20299.CrossRefPubMedPubMedCentral
17.
go back to reference Uejima H, Lee MP, Cui H, Feinberg AP: Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat Genet. 2000, 25 (8): 375-376.PubMed Uejima H, Lee MP, Cui H, Feinberg AP: Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat Genet. 2000, 25 (8): 375-376.PubMed
18.
19.
go back to reference Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T: Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol. 2000, 30 (7): 306-309. 10.1093/jjco/hyd079.CrossRefPubMed Takai D, Yagi Y, Habib N, Sugimura T, Ushijima T: Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol. 2000, 30 (7): 306-309. 10.1093/jjco/hyd079.CrossRefPubMed
20.
go back to reference Kitkumthorn N, Mutirangura A: Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics. 2011, 2 (2): 315-330. 10.1007/s13148-011-0032-8.CrossRefPubMedPubMedCentral Kitkumthorn N, Mutirangura A: Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics. 2011, 2 (2): 315-330. 10.1007/s13148-011-0032-8.CrossRefPubMedPubMedCentral
21.
go back to reference An B, Kondo Y, Okamoto Y, Shinjo K, Kanemitsu Y, Komori K, Hirai T, Sawaki A, Tajika M, Nakamura T, et al: Characteristic methylation profile in CpG island methylator phenotype-negative distal colorectal cancers. Int J Cancer. 2010, 127 (9): 2095-2105. 10.1002/ijc.25225.CrossRefPubMed An B, Kondo Y, Okamoto Y, Shinjo K, Kanemitsu Y, Komori K, Hirai T, Sawaki A, Tajika M, Nakamura T, et al: Characteristic methylation profile in CpG island methylator phenotype-negative distal colorectal cancers. Int J Cancer. 2010, 127 (9): 2095-2105. 10.1002/ijc.25225.CrossRefPubMed
22.
go back to reference Okamoto Y, Sawaki A, Ito S, Nishida T, Takahashi T, Toyota M, Suzuki H, Shinomura Y, Takeuchi I, Shinjo K, et al: Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. Gut. 2012, 61 (3): 392-401. 10.1136/gut.2011.241034.CrossRefPubMed Okamoto Y, Sawaki A, Ito S, Nishida T, Takahashi T, Toyota M, Suzuki H, Shinomura Y, Takeuchi I, Shinjo K, et al: Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. Gut. 2012, 61 (3): 392-401. 10.1136/gut.2011.241034.CrossRefPubMed
23.
go back to reference Okamoto K, Morison IM, Taniguchi T, Reeve AE: Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc Natl Acad Sci U S A. 1997, 94 (10): 5367-5371. 10.1073/pnas.94.10.5367.CrossRefPubMedPubMedCentral Okamoto K, Morison IM, Taniguchi T, Reeve AE: Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc Natl Acad Sci U S A. 1997, 94 (10): 5367-5371. 10.1073/pnas.94.10.5367.CrossRefPubMedPubMedCentral
24.
go back to reference Choi JD, Underkoffler LA, Wood AJ, Collins JN, Williams PT, Golden JA, Schuster EF, Loomes KM, Oakey RJ: A novel variant of Inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. Mol Cell Biol. 2005, 25 (13): 5514-5522. 10.1128/MCB.25.13.5514-5522.2005.CrossRefPubMedPubMedCentral Choi JD, Underkoffler LA, Wood AJ, Collins JN, Williams PT, Golden JA, Schuster EF, Loomes KM, Oakey RJ: A novel variant of Inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. Mol Cell Biol. 2005, 25 (13): 5514-5522. 10.1128/MCB.25.13.5514-5522.2005.CrossRefPubMedPubMedCentral
25.
go back to reference Monk D, Arnaud P, Frost JM, Wood AJ, Cowley M, Martin-Trujillo A, Guillaumet-Adkins A, Iglesias Platas I, Camprubi C, Bourc’his D, et al: Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes. Nucleic Acids Res. 2011, 39 (11): 4577-4586. 10.1093/nar/gkq1230.CrossRefPubMedPubMedCentral Monk D, Arnaud P, Frost JM, Wood AJ, Cowley M, Martin-Trujillo A, Guillaumet-Adkins A, Iglesias Platas I, Camprubi C, Bourc’his D, et al: Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes. Nucleic Acids Res. 2011, 39 (11): 4577-4586. 10.1093/nar/gkq1230.CrossRefPubMedPubMedCentral
26.
go back to reference Kanber D, Berulava T, Ammerpohl O, Mitter D, Richter J, Siebert R, Horsthemke B, Lohmann D, Buiting K: The human retinoblastoma gene is imprinted. PLoS Genet. 2009, 5 (12): e1000790-10.1371/journal.pgen.1000790.CrossRefPubMedPubMedCentral Kanber D, Berulava T, Ammerpohl O, Mitter D, Richter J, Siebert R, Horsthemke B, Lohmann D, Buiting K: The human retinoblastoma gene is imprinted. PLoS Genet. 2009, 5 (12): e1000790-10.1371/journal.pgen.1000790.CrossRefPubMedPubMedCentral
27.
go back to reference Hayward BE, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y, Bonthron DT: The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc Natl Acad Sci USA. 1998, 95 (17): 10038-10043. 10.1073/pnas.95.17.10038.CrossRefPubMedPubMedCentral Hayward BE, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y, Bonthron DT: The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc Natl Acad Sci USA. 1998, 95 (17): 10038-10043. 10.1073/pnas.95.17.10038.CrossRefPubMedPubMedCentral
28.
go back to reference Pasolli HA, Klemke M, Kehlenbach RH, Wang Y, Huttner WB: Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and subcellular localization. J Biol Chem. 2000, 275 (43): 33622-33632. 10.1074/jbc.M001335200.CrossRefPubMed Pasolli HA, Klemke M, Kehlenbach RH, Wang Y, Huttner WB: Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and subcellular localization. J Biol Chem. 2000, 275 (43): 33622-33632. 10.1074/jbc.M001335200.CrossRefPubMed
29.
go back to reference Klemke M, Pasolli HA, Kehlenbach RH, Offermanns S, Schultz G, Huttner WB: Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem. 2000, 5 (43): 33633-33640.CrossRef Klemke M, Pasolli HA, Kehlenbach RH, Offermanns S, Schultz G, Huttner WB: Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem. 2000, 5 (43): 33633-33640.CrossRef
30.
go back to reference Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, McMorrow L, Loew T: Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet. 1994, 7 (3): 440-447. 10.1038/ng0794-440.CrossRefPubMed Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, McMorrow L, Loew T: Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet. 1994, 7 (3): 440-447. 10.1038/ng0794-440.CrossRefPubMed
31.
go back to reference Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP: Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet. 1994, 7 (3): 433-439. 10.1038/ng0794-433.CrossRefPubMed Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP: Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet. 1994, 7 (3): 433-439. 10.1038/ng0794-433.CrossRefPubMed
32.
go back to reference Satoh Y, Nakadate H, Nakagawachi T, Higashimoto K, Joh K, Masaki Z, Uozumi J, Kaneko Y, Mukai T, Soejima H: Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br J Cancer. 2006, 95 (4): 541-547. 10.1038/sj.bjc.6603302.CrossRefPubMedPubMedCentral Satoh Y, Nakadate H, Nakagawachi T, Higashimoto K, Joh K, Masaki Z, Uozumi J, Kaneko Y, Mukai T, Soejima H: Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br J Cancer. 2006, 95 (4): 541-547. 10.1038/sj.bjc.6603302.CrossRefPubMedPubMedCentral
33.
go back to reference Erson A, Petty E: Kidney: Nephroblastoma (Wilms tumor). Atlas Genet Cytogenet Oncol Haematol. 2007, 11 (1): 50-53. Erson A, Petty E: Kidney: Nephroblastoma (Wilms tumor). Atlas Genet Cytogenet Oncol Haematol. 2007, 11 (1): 50-53.
34.
go back to reference Steenman M: Liver: Hepatoblastoma. Atlas Genet Cytogenet Oncol Haematol. 2002, 6 (1): 50-52. Steenman M: Liver: Hepatoblastoma. Atlas Genet Cytogenet Oncol Haematol. 2002, 6 (1): 50-52.
35.
go back to reference Kobayashi H, Sakurai T, Sato S, Nakabayashi K, Hata K, Kono T: Imprinted DNA methylation reprogramming during early mouse embryogenesis at the Gpr1-Zdbf2 locus is linked to long cis-intergenic transcription. FEBS Lett. 2012, 586 (6): 827-833. 10.1016/j.febslet.2012.01.059.CrossRefPubMed Kobayashi H, Sakurai T, Sato S, Nakabayashi K, Hata K, Kono T: Imprinted DNA methylation reprogramming during early mouse embryogenesis at the Gpr1-Zdbf2 locus is linked to long cis-intergenic transcription. FEBS Lett. 2012, 586 (6): 827-833. 10.1016/j.febslet.2012.01.059.CrossRefPubMed
Metadata
Title
Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma
Authors
Janette Mareska Rumbajan
Toshiyuki Maeda
Ryota Souzaki
Kazumasa Mitsui
Ken Higashimoto
Kazuhiko Nakabayashi
Hitomi Yatsuki
Kenichi Nishioka
Ryoko Harada
Shigehisa Aoki
Kenichi Kohashi
Yoshinao Oda
Kenichiro Hata
Tsutomu Saji
Tomoaki Taguchi
Tatsuro Tajiri
Hidenobu Soejima
Keiichiro Joh
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-608

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine