Skip to main content
Top
Published in: European Spine Journal 8/2007

01-08-2007 | Original Article

Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2

Authors: Rahul Vaidya, Julia Carp, Anil Sethi, Stephen Bartol, Joseph Craig, Clifford M. Les

Published in: European Spine Journal | Issue 8/2007

Login to get access

Abstract

The use of bone morphogenetic protein-2 (rhBMP-2) in spinal fusion has increased dramatically since an FDA approval for its use in anterior lumbar fusion with the LT cage. There are several reports of its use in transforaminal lumbar interbody fusion, posterolateral fusion, and anterior cervical fusion. Reports on adverse effects of rhBMP-2 when used in spinal fusion are scarce in literature. An Institutional Review Board approved retrospective study was conducted in patients undergoing anterior spinal fusion and instrumentation following diskectomy at a single center. Forty-six consecutive patients were included. Twenty-two patients treated with rhBMP-2 and PEEK cages were compared to 24 in whom allograft spacers and demineralized bone matrix was used. Patients filled out Cervical Oswestry Scores, VAS for arm pain, neck pain, and had radiographs preoperatively as well at every follow up visit. Radiographic examination following surgery revealed end plate resorption in all patients in whom rhBMP-2 was used. This was followed by a period of new bone formation commencing at 6 weeks. In contrast, allograft patients showed a progressive blurring of end plate-allograft junction. Dysphagia was a common complication and it was significantly more frequent and more severe in patients in whom rhBMP-2 was used. Post operative swelling anterior to the vertebral body on lateral cervical spine X-ray was significantly larger in the rhBMP-2 group when measured from 1 to 6 weeks after which it was similar. These effects are possibly due to an early inflammatory response to rhBMP-2 and were observed to be dose related. With the parameters we used, there was no significant difference in the clinical outcome of patients in the two groups at 2 years. The cost of implants in patients treated with rhBMP-2 and PEEK spacers was more than three times the cost of allograft spacers and demineralized bone matrix in 1, 2, and 3-level cases. Despite providing consistently good fusion rates, we have abandoned using rhBMP-2 and PEEK cages for anterior cervical fusion, due to the side effects, high cost, and the availability of a suitable alternative.
Literature
1.
go back to reference A guide from the The American Academy of Orthopedic Surgeons (AAOS) and American Association of Tissue Banks (AATB): What can you tell me about bone and tissue transplantation. Retrieved June 21, 2005 from http://www.aatb.org/aaosinfo.htm A guide from the The American Academy of Orthopedic Surgeons (AAOS) and American Association of Tissue Banks (AATB): What can you tell me about bone and tissue transplantation. Retrieved June 21, 2005 from http://​www.​aatb.​org/​aaosinfo.​htm
2.
go back to reference Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SRTM allograft ring and the ATLANTISTM anterior cervical plate. Spine 28(12):1219–1224PubMedCrossRef Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SRTM allograft ring and the ATLANTISTM anterior cervical plate. Spine 28(12):1219–1224PubMedCrossRef
3.
go back to reference Boakye M, Mummaneni PV, Garrett M, Rodts G, Haid R (2005) Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. J Neurosurg Spine 2:521–525PubMed Boakye M, Mummaneni PV, Garrett M, Rodts G, Haid R (2005) Anterior cervical discectomy and fusion involving a polyetheretherketone spacer and bone morphogenetic protein. J Neurosurg Spine 2:521–525PubMed
4.
go back to reference Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, Randomized clinical pilot trial 2002 Volvo Award in clinical studies. Spine 27(23):2662–2673PubMedCrossRef Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, Randomized clinical pilot trial 2002 Volvo Award in clinical studies. Spine 27(23):2662–2673PubMedCrossRef
5.
go back to reference Burkus JK (2004) Bone morphogenetic proteins in anterior lumbar interbody fusion: old techniques and new technologies. J Neurosurg Spine 3:254–260 Burkus JK (2004) Bone morphogenetic proteins in anterior lumbar interbody fusion: old techniques and new technologies. J Neurosurg Spine 3:254–260
6.
go back to reference Burkus JK, Heim SE, Gornet MF, Zdeblick TA (2004) The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics 27(7):723–728PubMed Burkus JK, Heim SE, Gornet MF, Zdeblick TA (2004) The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics 27(7):723–728PubMed
7.
go back to reference Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM (1990) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA 87(24):9843–9847PubMedCrossRef Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM (1990) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA 87(24):9843–9847PubMedCrossRef
8.
go back to reference Hidehiro I, Sohei E, Mikio K, Yutaka T, Tetsuya K, Yohei Y, Kunio T (1999) Experimental spinal fusion with use of recombinant human bone morphogenetic protein 2. Spine 24(14):1402–1405CrossRef Hidehiro I, Sohei E, Mikio K, Yutaka T, Tetsuya K, Yohei Y, Kunio T (1999) Experimental spinal fusion with use of recombinant human bone morphogenetic protein 2. Spine 24(14):1402–1405CrossRef
9.
go back to reference Johnson EE, Urist MR, Finerman GAM (1988) Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. A preliminary report. Clin Orthop Relat Res 230:257–265PubMed Johnson EE, Urist MR, Finerman GAM (1988) Bone morphogenetic protein augmentation grafting of resistant femoral nonunions. A preliminary report. Clin Orthop Relat Res 230:257–265PubMed
10.
go back to reference Johnson EE, Urist MR, Finerman GA (1988) Repair of segmental defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein. A preliminary report. Clin Orthop Relat Res 236:249–257PubMed Johnson EE, Urist MR, Finerman GA (1988) Repair of segmental defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein. A preliminary report. Clin Orthop Relat Res 236:249–257PubMed
11.
go back to reference Kleeman TJ, Michael Ahn U, Talbot-Kleeman A (2001) Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine 26(24):2751–2756PubMedCrossRef Kleeman TJ, Michael Ahn U, Talbot-Kleeman A (2001) Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine 26(24):2751–2756PubMedCrossRef
12.
go back to reference Mummaneni PV, Pan J, Haid RW, Rodts GE (2004) Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion. J Neurosurg Spine 1:19–23PubMedCrossRef Mummaneni PV, Pan J, Haid RW, Rodts GE (2004) Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion. J Neurosurg Spine 1:19–23PubMedCrossRef
13.
go back to reference Poynton AR, Lane JM (2002) Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 27(16S):S40–S48PubMedCrossRef Poynton AR, Lane JM (2002) Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 27(16S):S40–S48PubMedCrossRef
14.
15.
go back to reference Sandhu HS, Khan SN (2003) Recombinant human bone morphogenetic protein-2: use in spinal fusion applications. J Bone Joint Surg 85-A(Suppl 3):89–95PubMed Sandhu HS, Khan SN (2003) Recombinant human bone morphogenetic protein-2: use in spinal fusion applications. J Bone Joint Surg 85-A(Suppl 3):89–95PubMed
16.
go back to reference Sandhu HS, Toth JM, Diwan AD, Seim HB, Kanim LEA, Kabo JM, Turner AS (2002) Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 27(6):567–575PubMedCrossRef Sandhu HS, Toth JM, Diwan AD, Seim HB, Kanim LEA, Kabo JM, Turner AS (2002) Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 27(6):567–575PubMedCrossRef
17.
go back to reference Schimandle JH, Boden SD, Hutton WC (1995) Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine 20(12):1326–1337PubMedCrossRef Schimandle JH, Boden SD, Hutton WC (1995) Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine 20(12):1326–1337PubMedCrossRef
18.
go back to reference Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31(5):542–547PubMedCrossRef Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31(5):542–547PubMedCrossRef
21.
go back to reference Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P et al (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87(6):2220–2224PubMedCrossRef Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P et al (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87(6):2220–2224PubMedCrossRef
22.
go back to reference Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 85(24):9484–9488PubMedCrossRef Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 85(24):9484–9488PubMedCrossRef
23.
go back to reference Zdeblick TA, Ghanayem AJ, Rapoff AJ, Swain C, Bassett T, Cooke ME, Markel M (1998) Cervical interbody fusion cages: an animal model with and without bone morphogenetic protein. Spine 23(7):758–765PubMedCrossRef Zdeblick TA, Ghanayem AJ, Rapoff AJ, Swain C, Bassett T, Cooke ME, Markel M (1998) Cervical interbody fusion cages: an animal model with and without bone morphogenetic protein. Spine 23(7):758–765PubMedCrossRef
Metadata
Title
Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2
Authors
Rahul Vaidya
Julia Carp
Anil Sethi
Stephen Bartol
Joseph Craig
Clifford M. Les
Publication date
01-08-2007
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 8/2007
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-007-0351-9

Other articles of this Issue 8/2007

European Spine Journal 8/2007 Go to the issue