Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2012

Open Access 01-12-2012 | Research article

Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: the HELENA study

Authors: Jérémy Vanhelst, Laurent Béghin, Alain Duhamel, Patrick Bergman, Michael Sjöström, Frédéric Gottrand

Published in: BMC Medical Research Methodology | Issue 1/2012

Login to get access

Abstract

Background

Different types of devices are available and the choice about which to use depends on various factors: cost, physical characteristics, performance, and the validity and intra- and interinstrument reliability. Given the large number of studies that have used uniaxial or triaxial devices, it is of interest to know whether the different devices give similar information about PA levels and patterns. The aim of this study was to compare physical activity (PA) levels and patterns obtained simultaneously by triaxial accelerometry and uniaxial accelerometry in adolescents in free-living conditions.

Methods

Sixty-two participants, aged 13-16 years, were recruited in this ancillary study, which is a part of the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA). All participants wore a uniaxial accelerometer (ActiGraph GT1M®, Pensacola, FL) and a triaxial accelerometer (RT3®, Stayhealthy, Monrovia, CA) simultaneously for 7 days. The patterns were calculated by converting accelerometer data output as a percentage of time spent at sedentary, light, moderate, and vigorous PA per day. Analysis of output data from the two accelerometers were assessed by two different tests: Equivalence Test and Bland & Altman method.

Results

The concordance correlation coefficient between the data from the triaxial accelerometer and uniaxial accelerometer at each intensity level was superior to 0.95. The ANOVA test showed a significant difference for the first three lower intensities while no significant difference was found for vigorous intensity. The difference between data obtained with the triaxial accelerometer and the uniaxial monitor never exceeded 2.1% and decreased as PA level increased. The Bland & Altman method showed good agreement between data obtained between the both accelerometers (p < 0.05).

Conclusions

Uniaxial and triaxial accelerometers do not differ in their measurement of PA in population studies, and either could be used in such studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fox KR, Stathi A, McKenna J, Davis MG: Physical activity and mental well-being in older people participating in the Better Ageing Project. Eur J Appl Physiol. 2007, 100: 591-602. 10.1007/s00421-007-0392-0.CrossRefPubMed Fox KR, Stathi A, McKenna J, Davis MG: Physical activity and mental well-being in older people participating in the Better Ageing Project. Eur J Appl Physiol. 2007, 100: 591-602. 10.1007/s00421-007-0392-0.CrossRefPubMed
2.
go back to reference Patrick K, Norman GJ, Calfas KJ, Sallis JF, Zabinski MF, Rupp J, Cella J: Diet, physical activity, and sedentary behaviors as risk factors for overweight in adolescence. Arch Pediatr Adolesc Med. 2004, 158: 385-90. 10.1001/archpedi.158.4.385.CrossRefPubMed Patrick K, Norman GJ, Calfas KJ, Sallis JF, Zabinski MF, Rupp J, Cella J: Diet, physical activity, and sedentary behaviors as risk factors for overweight in adolescence. Arch Pediatr Adolesc Med. 2004, 158: 385-90. 10.1001/archpedi.158.4.385.CrossRefPubMed
3.
go back to reference Toschke JA, von Kries R, Rosenfeld E, Toschke AM: Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. Clin Nutr. 2007, 26: 416-20. 10.1016/j.clnu.2007.03.009.CrossRefPubMed Toschke JA, von Kries R, Rosenfeld E, Toschke AM: Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. Clin Nutr. 2007, 26: 416-20. 10.1016/j.clnu.2007.03.009.CrossRefPubMed
4.
go back to reference Chen KY, Bassett DR: The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005, 37 (11 Suppl): S490-500.CrossRefPubMed Chen KY, Bassett DR: The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005, 37 (11 Suppl): S490-500.CrossRefPubMed
5.
go back to reference Moreno LA, González-Gross M, Kersting M, Molnár D, de Henauw S, Beghin L, Sjöström M, Hagströmer M, Manios Y, Gilbert CC, et al: Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents. The HELENA Study. Public Health Nutr. 2008, 11: 288-299.CrossRefPubMed Moreno LA, González-Gross M, Kersting M, Molnár D, de Henauw S, Beghin L, Sjöström M, Hagströmer M, Manios Y, Gilbert CC, et al: Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents. The HELENA Study. Public Health Nutr. 2008, 11: 288-299.CrossRefPubMed
6.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000, 320: 1240-3. 10.1136/bmj.320.7244.1240.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000, 320: 1240-3. 10.1136/bmj.320.7244.1240.CrossRefPubMedPubMedCentral
7.
go back to reference Tanner JM: Normal growth and techniques of growth assessment. Clin Endocrinol Metab. 1986, 15: 411-51. 10.1016/S0300-595X(86)80005-6.CrossRefPubMed Tanner JM: Normal growth and techniques of growth assessment. Clin Endocrinol Metab. 1986, 15: 411-51. 10.1016/S0300-595X(86)80005-6.CrossRefPubMed
8.
go back to reference Béghin L, Castera M, Manios Y, Gilbert CC, Kersting M, De Henauw S, Kafatos A, Gottrand F, Molnar D, Sjöström M, et al: Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int J Obes. 2008, 32: S12-8.CrossRef Béghin L, Castera M, Manios Y, Gilbert CC, Kersting M, De Henauw S, Kafatos A, Gottrand F, Molnar D, Sjöström M, et al: Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int J Obes. 2008, 32: S12-8.CrossRef
9.
go back to reference Powell SM, Jones DI, Rowlands AV: Technical variability of the RT3 accelerometer. Med Sci Sports Exerc. 2003, 35: 1773-8. 10.1249/01.MSS.0000089341.68754.BA.CrossRefPubMed Powell SM, Jones DI, Rowlands AV: Technical variability of the RT3 accelerometer. Med Sci Sports Exerc. 2003, 35: 1773-8. 10.1249/01.MSS.0000089341.68754.BA.CrossRefPubMed
10.
go back to reference Vanhelst J, Béghin L, Rasoamanana P, Theunynck D, Meskini T, Iliescu C, Duhamel A, Turck D, Gottrand F: RT3 accelerometer thresholds for physical activity levels in children and adolescents. J Sports Sci. 2010, 28: 381-7. 10.1080/02640410903508821.CrossRefPubMed Vanhelst J, Béghin L, Rasoamanana P, Theunynck D, Meskini T, Iliescu C, Duhamel A, Turck D, Gottrand F: RT3 accelerometer thresholds for physical activity levels in children and adolescents. J Sports Sci. 2010, 28: 381-7. 10.1080/02640410903508821.CrossRefPubMed
11.
go back to reference Krasnoff JB, Kohn MA, Choy FK, Doyle J, Johansen K, Painter PL: Interunit and intraunit reliability of the RT3 triaxial accelerometer. J Phys Act Health. 2008, 5: 527-38.PubMed Krasnoff JB, Kohn MA, Choy FK, Doyle J, Johansen K, Painter PL: Interunit and intraunit reliability of the RT3 triaxial accelerometer. J Phys Act Health. 2008, 5: 527-38.PubMed
12.
go back to reference Reneman M, Helmus M: Interinstrument reliability of the RT3 accelerometer. Int J Rehabil Res. 2010, 33: 178-9. 10.1097/MRR.0b013e32832c1e73.CrossRefPubMed Reneman M, Helmus M: Interinstrument reliability of the RT3 accelerometer. Int J Rehabil Res. 2010, 33: 178-9. 10.1097/MRR.0b013e32832c1e73.CrossRefPubMed
13.
go back to reference Vanhelst J, Theunynck D, Gottrand F, Béghin L: Reliability of the RT3 accelerometer for measurement of physical activity in adolescents. J Sports Sci. 2010, 28: 375-9. 10.1080/02640410903502790.CrossRefPubMed Vanhelst J, Theunynck D, Gottrand F, Béghin L: Reliability of the RT3 accelerometer for measurement of physical activity in adolescents. J Sports Sci. 2010, 28: 375-9. 10.1080/02640410903502790.CrossRefPubMed
14.
go back to reference Vanhelst J, Béghin L, Turck D, Gottrand F: New validated thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Int J Rehabil Res. 2011, 34: 175-77. 10.1097/MRR.0b013e328340129e.CrossRefPubMed Vanhelst J, Béghin L, Turck D, Gottrand F: New validated thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Int J Rehabil Res. 2011, 34: 175-77. 10.1097/MRR.0b013e328340129e.CrossRefPubMed
15.
go back to reference Esliger DW, Tremblay MS: Technical reliability assessment of three accelerometer models in a mechanical setup. Med Sci Sports Exerc. 2006, 38: 2173-81. 10.1249/01.mss.0000239394.55461.08.CrossRefPubMed Esliger DW, Tremblay MS: Technical reliability assessment of three accelerometer models in a mechanical setup. Med Sci Sports Exerc. 2006, 38: 2173-81. 10.1249/01.mss.0000239394.55461.08.CrossRefPubMed
16.
go back to reference Fleiss JL: Design and analysis of clinical experiments. New York. Edited by: York N. 1986, NY: USA Fleiss JL: Design and analysis of clinical experiments. New York. Edited by: York N. 1986, NY: USA
17.
go back to reference Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 1: 307-310.CrossRefPubMed Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 1: 307-310.CrossRefPubMed
18.
go back to reference Eston RG, Rowlands AV, Ingledew DK: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children's activities. J Appl Physiol. 1998, 84: 362-71.PubMed Eston RG, Rowlands AV, Ingledew DK: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children's activities. J Appl Physiol. 1998, 84: 362-71.PubMed
19.
go back to reference Plasqui G, Joosen AM, Kester AD, Goris AH, Westerterp KR: Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res. 2005, 13: 1363-9. 10.1038/oby.2005.165.CrossRefPubMed Plasqui G, Joosen AM, Kester AD, Goris AH, Westerterp KR: Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res. 2005, 13: 1363-9. 10.1038/oby.2005.165.CrossRefPubMed
20.
go back to reference Westerterp KR: Assessment of physical activity level in relation to obesity: current evidence and research issues. Med Sci Sports Exerc. 1999, 31: S522-5. 10.1097/00005768-199911001-00006.CrossRefPubMed Westerterp KR: Assessment of physical activity level in relation to obesity: current evidence and research issues. Med Sci Sports Exerc. 1999, 31: S522-5. 10.1097/00005768-199911001-00006.CrossRefPubMed
21.
go back to reference Howe CA, Staudenmayer JW, Freedson PS: Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009, 41: 2199-206. 10.1249/MSS.0b013e3181aa3a0e.CrossRefPubMed Howe CA, Staudenmayer JW, Freedson PS: Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009, 41: 2199-206. 10.1249/MSS.0b013e3181aa3a0e.CrossRefPubMed
22.
go back to reference Macfarlane DJ, Lee CC, Ho EY, Chan KL, Chan D: Convergent validity of six methods to assess physical activity in daily life. J Appl Physiol. 2006, 101: 1328-34. 10.1152/japplphysiol.00336.2006.CrossRefPubMed Macfarlane DJ, Lee CC, Ho EY, Chan KL, Chan D: Convergent validity of six methods to assess physical activity in daily life. J Appl Physiol. 2006, 101: 1328-34. 10.1152/japplphysiol.00336.2006.CrossRefPubMed
23.
go back to reference Paul DR, Kramer M, Moshfegh AJ, Baer DJ, Rumpler WV: Comparison of two different physical activity monitors. BMC Med Res Methodol. 2007, 7: 26-10.1186/1471-2288-7-26.CrossRefPubMedPubMedCentral Paul DR, Kramer M, Moshfegh AJ, Baer DJ, Rumpler WV: Comparison of two different physical activity monitors. BMC Med Res Methodol. 2007, 7: 26-10.1186/1471-2288-7-26.CrossRefPubMedPubMedCentral
24.
go back to reference Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY: Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity. 2008, 16: 1946-52. 10.1038/oby.2008.279.CrossRefPubMedPubMedCentral Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY: Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity. 2008, 16: 1946-52. 10.1038/oby.2008.279.CrossRefPubMedPubMedCentral
25.
go back to reference Leenders NY, Sherman WM, Nagaraja HN: Energy expenditure estimated by accelerometry and doubly labeled water: do they agree?. Med Sci Sports Exerc. 2006, 38: 2165-72. 10.1249/01.mss.0000235883.94357.95.CrossRefPubMed Leenders NY, Sherman WM, Nagaraja HN: Energy expenditure estimated by accelerometry and doubly labeled water: do they agree?. Med Sci Sports Exerc. 2006, 38: 2165-72. 10.1249/01.mss.0000235883.94357.95.CrossRefPubMed
26.
go back to reference Baquet G, Stratton G, Van Praagh E, Berthoin S: Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med. 2007, 44: 143-7. 10.1016/j.ypmed.2006.10.004.CrossRefPubMed Baquet G, Stratton G, Van Praagh E, Berthoin S: Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med. 2007, 44: 143-7. 10.1016/j.ypmed.2006.10.004.CrossRefPubMed
27.
go back to reference Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ, Going S, Norman JE, Pate R: Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004, 36: 1259-66.CrossRefPubMedPubMedCentral Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ, Going S, Norman JE, Pate R: Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004, 36: 1259-66.CrossRefPubMedPubMedCentral
28.
go back to reference Puyau MR, Adolph AL, Vohra FA, Butte NF: Validation and calibration of physical activity monitors in children. Obes Res. 2002, 10: 150-7. 10.1038/oby.2002.24.CrossRefPubMed Puyau MR, Adolph AL, Vohra FA, Butte NF: Validation and calibration of physical activity monitors in children. Obes Res. 2002, 10: 150-7. 10.1038/oby.2002.24.CrossRefPubMed
29.
go back to reference Ekelund U, Sardinha LB, Anderssen SA, Harro M, Franks PW, Brage S, Cooper AR, Andersen LB, Riddoch C, Froberg K: Associations between objectively assessed physical activity and indicators of body fatness in 9 to 10-year-old European children: a population-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr. 2004, 80: 584-590.PubMed Ekelund U, Sardinha LB, Anderssen SA, Harro M, Franks PW, Brage S, Cooper AR, Andersen LB, Riddoch C, Froberg K: Associations between objectively assessed physical activity and indicators of body fatness in 9 to 10-year-old European children: a population-based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr. 2004, 80: 584-590.PubMed
Metadata
Title
Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: the HELENA study
Authors
Jérémy Vanhelst
Laurent Béghin
Alain Duhamel
Patrick Bergman
Michael Sjöström
Frédéric Gottrand
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2012
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-12-26

Other articles of this Issue 1/2012

BMC Medical Research Methodology 1/2012 Go to the issue