Skip to main content
Top
Published in: EJNMMI Research 1/2014

Open Access 01-12-2014 | Original research

Comparison of PET template-based and MRI-based image processing in the quantitative analysis of C11-raclopride PET

Authors: Felix P Kuhn, Geoffrey I Warnock, Cyrill Burger, Katharina Ledermann, Chantal Martin-Soelch, Alfred Buck

Published in: EJNMMI Research | Issue 1/2014

Login to get access

Abstract

Background

Quantitative measures of 11C-raclopride receptor binding can be used as a correlate of postsynaptic D2 receptor density in the striatum, allowing 11C-raclopride positron emission tomography (PET) to be used for the differentiation of Parkinson’s disease from atypical parkinsonian syndromes. Comparison with reference values is recommended to establish a reliable diagnosis. A PET template specific to raclopride may facilitate direct computation of parametric maps without the need for an additional MR scan, aiding automated image analysis.

Methods

Sixteen healthy volunteers underwent a dynamic 11C-raclopride PET and a high-resolution T1-weighted MR scan of the brain. PET data from eight healthy subjects was processed to generate a raclopride-specific PET template normalized to standard space. Subsequently, the data processing based on the PET template was validated against the standard magnetic resonance imaging (MRI)-based method in 8 healthy subjects and 20 patients with suspected parkinsonian syndrome. Semi-quantitative image analysis was performed in Montreal Neurological Institute (MNI) and in original image space (OIS) using VOIs derived from a probabilistic brain atlas previously validated by Hammers et al. (Hum Brain Mapp, 15:165–174, 2002).

Results

The striatal-to-cerebellar ratio (SCR) of 11C-raclopride uptake obtained using the PET template was in good agreement with the MRI-based image processing method, yielding a Lin’s concordance coefficient of 0.87. Bland-Altman analysis showed that all measurements were within the ±1.96 standard deviation range. In all 20 patients, the PET template-based processing was successful and manual volume of interest optimization had no further impact on the diagnosis of PD in this patient group. A maximal difference of <5% was found between the measured SCR in MNI space and OIS.

Conclusions

The PET template-based method for automated quantification of postsynaptic D2 receptor density is simple to implement and facilitates rapid, robust and reliable image analysis. There was no significant difference between the SCR values obtained with either PET- or MRI-based image processing. The method presented alleviates the clinical workflow and facilitates automated image analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaasinen V, Ruottinen HM, Nagren K, Lehikoinen P, Oikonen V, Rinne JO: Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med 2000, 41: 65–70.PubMed Kaasinen V, Ruottinen HM, Nagren K, Lehikoinen P, Oikonen V, Rinne JO: Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med 2000, 41: 65–70.PubMed
2.
go back to reference Van Laere K, Clerinx K, D’Hondt E, de Groot T, Vandenberghe W: Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med 2010, 51: 588–595. 10.2967/jnumed.109.070144CrossRefPubMed Van Laere K, Clerinx K, D’Hondt E, de Groot T, Vandenberghe W: Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med 2010, 51: 588–595. 10.2967/jnumed.109.070144CrossRefPubMed
3.
go back to reference Wong DF, Young D, Wilson PD, Meltzer CC, Gjedde A: Quantification of neuroreceptors in the living human brain: III. D2-like dopamine receptors: theory, validation, and changes during normal aging. J Cereb Blood Flow Metab 1997, 17: 316–330.CrossRefPubMed Wong DF, Young D, Wilson PD, Meltzer CC, Gjedde A: Quantification of neuroreceptors in the living human brain: III. D2-like dopamine receptors: theory, validation, and changes during normal aging. J Cereb Blood Flow Metab 1997, 17: 316–330.CrossRefPubMed
4.
go back to reference Hammers A, Koepp MJ, Free SL, Brett M, Richardson MP, Labbe C, Cunningham VJ, Brooks DJ, Duncan J: Implementation and application of a brain template for multiple volumes of interest. Hum Brain Mapp 2002, 15: 165–174. 10.1002/hbm.10016CrossRefPubMed Hammers A, Koepp MJ, Free SL, Brett M, Richardson MP, Labbe C, Cunningham VJ, Brooks DJ, Duncan J: Implementation and application of a brain template for multiple volumes of interest. Hum Brain Mapp 2002, 15: 165–174. 10.1002/hbm.10016CrossRefPubMed
5.
go back to reference Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 2003, 19: 224–247. 10.1002/hbm.10123CrossRefPubMed Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 2003, 19: 224–247. 10.1002/hbm.10123CrossRefPubMed
6.
go back to reference Hsiao IT, Huang CC, Hsieh CJ, Wey SP, Kung MP, Yen TC, Lin KJ: Perfusion-like template and standardized normalization-based brain image analysis using (18)F-florbetapir (AV-45/Amyvid) PET. Eur J Nucl Med Mol Imaging 2013, 40: 908–920. 10.1007/s00259-013-2350-xCrossRefPubMed Hsiao IT, Huang CC, Hsieh CJ, Wey SP, Kung MP, Yen TC, Lin KJ: Perfusion-like template and standardized normalization-based brain image analysis using (18)F-florbetapir (AV-45/Amyvid) PET. Eur J Nucl Med Mol Imaging 2013, 40: 908–920. 10.1007/s00259-013-2350-xCrossRefPubMed
7.
go back to reference Rostomian AH, Madison C, Rabinovici GD, Jagust WJ: Early 11C-PIB frames and 18 F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med 2011, 52: 173–179.PubMedCentralPubMed Rostomian AH, Madison C, Rabinovici GD, Jagust WJ: Early 11C-PIB frames and 18 F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med 2011, 52: 173–179.PubMedCentralPubMed
8.
go back to reference Yasuno F, Hasnine AH, Suhara T, Ichimiya T, Sudo Y, Inoue M, Takano A, Ou T, Ando T, Toyama H: Template-based method for multiple volumes of interest of human brain PET images. Neuroimage 2002, 16: 577–586. 10.1006/nimg.2002.1120CrossRefPubMed Yasuno F, Hasnine AH, Suhara T, Ichimiya T, Sudo Y, Inoue M, Takano A, Ou T, Ando T, Toyama H: Template-based method for multiple volumes of interest of human brain PET images. Neuroimage 2002, 16: 577–586. 10.1006/nimg.2002.1120CrossRefPubMed
9.
go back to reference Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, Holm S, Paulson OB, Knudsen GM: MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 2005, 24: 969–979. 10.1016/j.neuroimage.2004.10.017CrossRefPubMed Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, Holm S, Paulson OB, Knudsen GM: MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 2005, 24: 969–979. 10.1016/j.neuroimage.2004.10.017CrossRefPubMed
10.
go back to reference Rusjan P, Mamo D, Ginovart N, Hussey D, Vitcu I, Yasuno F, Tetsuya S, Houle S, Kapur S: An automated method for the extraction of regional data from PET images. Psychiatry Res 2006, 147: 79–89. 10.1016/j.pscychresns.2006.01.011CrossRefPubMed Rusjan P, Mamo D, Ginovart N, Hussey D, Vitcu I, Yasuno F, Tetsuya S, Houle S, Kapur S: An automated method for the extraction of regional data from PET images. Psychiatry Res 2006, 147: 79–89. 10.1016/j.pscychresns.2006.01.011CrossRefPubMed
11.
go back to reference Meyer JH, Gunn RN, Myers R, Grasby PM: Assessment of spatial normalization of PET ligand images using ligand-specific templates. Neuroimage 1999, 9: 545–553. 10.1006/nimg.1999.0431CrossRefPubMed Meyer JH, Gunn RN, Myers R, Grasby PM: Assessment of spatial normalization of PET ligand images using ligand-specific templates. Neuroimage 1999, 9: 545–553. 10.1006/nimg.1999.0431CrossRefPubMed
12.
go back to reference Chang IC, Lue KH, Hsieh HJ, Liu SH, Kao CH: Automated striatal uptake analysis of (18)F-FDOPA PET images applied to Parkinson’s disease patients. Ann Nucl Med 2011, 25: 796–803. 10.1007/s12149-011-0533-8CrossRefPubMed Chang IC, Lue KH, Hsieh HJ, Liu SH, Kao CH: Automated striatal uptake analysis of (18)F-FDOPA PET images applied to Parkinson’s disease patients. Ann Nucl Med 2011, 25: 796–803. 10.1007/s12149-011-0533-8CrossRefPubMed
13.
go back to reference Edison P, Carter SF, Rinne JO, Gelosa G, Herholz K, Nordberg A, Brooks DJ, Hinz R: Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2013, 70: 423–433.CrossRefPubMed Edison P, Carter SF, Rinne JO, Gelosa G, Herholz K, Nordberg A, Brooks DJ, Hinz R: Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2013, 70: 423–433.CrossRefPubMed
14.
go back to reference Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, Hammers A: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Neuroimage 2008, 40: 672–684. 10.1016/j.neuroimage.2007.11.034CrossRefPubMed Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, Hammers A: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Neuroimage 2008, 40: 672–684. 10.1016/j.neuroimage.2007.11.034CrossRefPubMed
15.
go back to reference Lin LI: A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45: 255–268. 10.2307/2532051CrossRefPubMed Lin LI: A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45: 255–268. 10.2307/2532051CrossRefPubMed
16.
go back to reference Rousset OG, Collins DL, Rahmim A, Wong DF: Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med 2008, 49: 1097–1106. 10.2967/jnumed.107.048330PubMedCentralCrossRefPubMed Rousset OG, Collins DL, Rahmim A, Wong DF: Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med 2008, 49: 1097–1106. 10.2967/jnumed.107.048330PubMedCentralCrossRefPubMed
Metadata
Title
Comparison of PET template-based and MRI-based image processing in the quantitative analysis of C11-raclopride PET
Authors
Felix P Kuhn
Geoffrey I Warnock
Cyrill Burger
Katharina Ledermann
Chantal Martin-Soelch
Alfred Buck
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2014
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/2191-219X-4-7

Other articles of this Issue 1/2014

EJNMMI Research 1/2014 Go to the issue