Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2007

Open Access 01-12-2007 | Research article

Comparison of new forms of creatine in raising plasma creatine levels

Authors: Ralf Jäger, Roger C Harris, Martin Purpura, Marc Francaux

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2007

Login to get access

Abstract

Background

Previous research has shown that plasma creatine levels are influenced by extracellular concentrations of insulin and glucose as well as by the intracellular creatine concentration. However, the form of creatine administered does not appear to have any effect although specific data on this is lacking. This study examined whether the administration of three different forms of creatine had different effects on plasma creatine concentrations and pharmacokinetics.

Methods

Six healthy subjects (three female and three male subjects) participated in the study. Each subject was assigned to ingest a single dose of isomolar amounts of creatine (4.4 g) in the form of creatine monohydrate (CrM), tri-creatine citrate (CrC), or creatine pyruvate (CrPyr) using a balanced cross-over design. Plasma concentration curves, determined over eight hours after ingestion, were subject to pharmacokinetic analysis and primary derived data were analyzed by repeated measures ANOVA.

Results

Mean peak concentrations and area under the curve (AUC) were significantly higher with CrPyr (17 and 14%, respectively) in comparison to CrM and CrC. Mean peak concentration and AUC were not significantly different between CrM and CrC. Despite the higher peak concentration with CrPyr there was no difference between the estimated velocity constants of absorption (ka) or elimination (kel) between the three treatments. There was no effect of treatment with CrPyr on the plasma pyruvate concentration.

Conclusion

The findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion of isomolar (with respect to creatine) doses of CrM, CrC and CrPyr although differences in ka could not be detected due to the small number of blood samples taken during the absorption phase. Characteristically this resulted in higher plasma concentrations of creatine with CrPyr. Differences in bioavailability are thought to be unlikely since absorption of CrM is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harris RC, Söderlund K, Hultman E: Evaluation of Creatine in resting and exercised muscle of normal subjects by Creatine supplementation. Clin Sci (Lond). 1992, 83 (3): 367-374.CrossRef Harris RC, Söderlund K, Hultman E: Evaluation of Creatine in resting and exercised muscle of normal subjects by Creatine supplementation. Clin Sci (Lond). 1992, 83 (3): 367-374.CrossRef
2.
go back to reference Terjung RL, Clarkson P, Eichner ER, Greenhaff PL, Hespel PJ, Israel RG, Kraemer WJ, Meyer RA, Spriet LL, Tarnopolsky MA, Wagenmakers AJM, Williams MH: The American College of Sports Medicine Roundtable on the physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc. 2000, 32 (3): 706-717. 10.1097/00005768-200003000-00024.CrossRefPubMed Terjung RL, Clarkson P, Eichner ER, Greenhaff PL, Hespel PJ, Israel RG, Kraemer WJ, Meyer RA, Spriet LL, Tarnopolsky MA, Wagenmakers AJM, Williams MH: The American College of Sports Medicine Roundtable on the physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc. 2000, 32 (3): 706-717. 10.1097/00005768-200003000-00024.CrossRefPubMed
3.
go back to reference Williams MH, Kreider RB, Branch JD: Creatine: the power supplement. 1999, Champaign: Human Kinetics Williams MH, Kreider RB, Branch JD: Creatine: the power supplement. 1999, Champaign: Human Kinetics
4.
go back to reference Chanutin A: The fate of creatine when administered to man. J Biol Chem. 1926, 67 (1): 29-41. Chanutin A: The fate of creatine when administered to man. J Biol Chem. 1926, 67 (1): 29-41.
5.
go back to reference Deldicque L, Décombaz J, Zbinden Foncea H, Vuichoud J, Poortmans JR, Francaux M: Kinetics of creatine ingested as a food ingredient. Eur J Appl Physiol. 2008, 102 (2): 133-143. 10.1007/s00421-007-0558-9.CrossRefPubMed Deldicque L, Décombaz J, Zbinden Foncea H, Vuichoud J, Poortmans JR, Francaux M: Kinetics of creatine ingested as a food ingredient. Eur J Appl Physiol. 2008, 102 (2): 133-143. 10.1007/s00421-007-0558-9.CrossRefPubMed
6.
go back to reference Stanko RT, Robertson RJ, Galbreath RW, Reilly JJ, Greenawalt KD, Goss FL: Enhanced leg exercise endurance with a high-carbohydrate diet and dihydroxyacetone and pyruvate. J Appl Physiol. 1990, 69 (5): 1651-1656.PubMed Stanko RT, Robertson RJ, Galbreath RW, Reilly JJ, Greenawalt KD, Goss FL: Enhanced leg exercise endurance with a high-carbohydrate diet and dihydroxyacetone and pyruvate. J Appl Physiol. 1990, 69 (5): 1651-1656.PubMed
7.
go back to reference Stanko RT, Robertson RJ, Spina RJ, Reilly JJ, Greenawalt KD, Goss FL: Enhancement of arm exercise endurance capacity with dihydroxyacetone and pyruvate. J Appl Physiol. 1990, 68 (1): 119-124.PubMed Stanko RT, Robertson RJ, Spina RJ, Reilly JJ, Greenawalt KD, Goss FL: Enhancement of arm exercise endurance capacity with dihydroxyacetone and pyruvate. J Appl Physiol. 1990, 68 (1): 119-124.PubMed
8.
go back to reference Kalman D, Colker CM, Wilers I, Routs JB, Antonio J: The effects of pyruvate supplementation on body composition in overweight individuals. Nutrition. 1999, 15 (5): 337-340. 10.1016/S0899-9007(99)00034-9.CrossRefPubMed Kalman D, Colker CM, Wilers I, Routs JB, Antonio J: The effects of pyruvate supplementation on body composition in overweight individuals. Nutrition. 1999, 15 (5): 337-340. 10.1016/S0899-9007(99)00034-9.CrossRefPubMed
9.
go back to reference Stone MH, Sanborn K, Smith LL, O'Bryant HS, Hoke T, Utter AC, Johnson RL, Boros R, Hruby J, Pierce KC, Stone ME, Garner B: Effects of in-season (5 weeks) creatine and pyruvate supplementation on aerobic performance and body composition in American football players. Int J Sport Nutr. 1999, 9 (2): 146-165.PubMed Stone MH, Sanborn K, Smith LL, O'Bryant HS, Hoke T, Utter AC, Johnson RL, Boros R, Hruby J, Pierce KC, Stone ME, Garner B: Effects of in-season (5 weeks) creatine and pyruvate supplementation on aerobic performance and body composition in American football players. Int J Sport Nutr. 1999, 9 (2): 146-165.PubMed
10.
go back to reference Koh-Banerjee PK, Ferrerira MP, Greenwood M, Bowden RG, Cowen PN, Almada AL, Kreider RB: Effects of Calcium Pyruvate supplementation during training on body composition, exercise capacity, and metabolic responses to exercise. Nutrition. 2005, 21 (3): 312-319. 10.1016/j.nut.2004.06.026.CrossRefPubMed Koh-Banerjee PK, Ferrerira MP, Greenwood M, Bowden RG, Cowen PN, Almada AL, Kreider RB: Effects of Calcium Pyruvate supplementation during training on body composition, exercise capacity, and metabolic responses to exercise. Nutrition. 2005, 21 (3): 312-319. 10.1016/j.nut.2004.06.026.CrossRefPubMed
11.
go back to reference Morrison MA, Spriet LL, Dyck DJ: Pyruvate ingestion for 7-days does not improve aerobic performance in well-trained individuals. J Appl Physiol. 2000, 89: 549-556.PubMed Morrison MA, Spriet LL, Dyck DJ: Pyruvate ingestion for 7-days does not improve aerobic performance in well-trained individuals. J Appl Physiol. 2000, 89: 549-556.PubMed
12.
go back to reference Van Schuylenbergh R, Van Leemputte M, Hespel P: Effects of oral creatine-pyruvate supplementation in cycling performance. Int J Sports Med. 2003, 24 (2): 144-150. 10.1055/s-2003-38400.CrossRefPubMed Van Schuylenbergh R, Van Leemputte M, Hespel P: Effects of oral creatine-pyruvate supplementation in cycling performance. Int J Sports Med. 2003, 24 (2): 144-150. 10.1055/s-2003-38400.CrossRefPubMed
13.
go back to reference Harris RC, Hultman E, Nordesjö LO: Glycogen, glycolytic intermediates and high energy phosphates in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974, 33 (2): 109-120. 10.3109/00365517409082477.CrossRefPubMed Harris RC, Hultman E, Nordesjö LO: Glycogen, glycolytic intermediates and high energy phosphates in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974, 33 (2): 109-120. 10.3109/00365517409082477.CrossRefPubMed
15.
go back to reference Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL: Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996, 271: E821-826.PubMed Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL: Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996, 271: E821-826.PubMed
16.
go back to reference Schedel JM, Tanaka H, Kiyonaga A, Shindo M, Schutz Y: Acute creatine ingestion in human: consequences on serum creatine and creatinine concentrations. Life Sci. 1999, 65 (23): 2463-2470. 10.1016/S0024-3205(99)00512-3.CrossRefPubMed Schedel JM, Tanaka H, Kiyonaga A, Shindo M, Schutz Y: Acute creatine ingestion in human: consequences on serum creatine and creatinine concentrations. Life Sci. 1999, 65 (23): 2463-2470. 10.1016/S0024-3205(99)00512-3.CrossRefPubMed
17.
go back to reference Vanakoski J, Kosunen V, Meririnne E, Seppala T: Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations. Int J Clin Pharmacol Ther. 1998, 36 (5): 258-262.PubMed Vanakoski J, Kosunen V, Meririnne E, Seppala T: Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations. Int J Clin Pharmacol Ther. 1998, 36 (5): 258-262.PubMed
18.
go back to reference Persky AM, Müller M, Derendorf H, Grant M, Brazeau GA, Hochhaus G: Single- and multiple-dose pharmacokinetics of oral creatine. J Clin Pharmacol. 2003, 43 (1): 29-37. 10.1177/0091270002239703.CrossRefPubMed Persky AM, Müller M, Derendorf H, Grant M, Brazeau GA, Hochhaus G: Single- and multiple-dose pharmacokinetics of oral creatine. J Clin Pharmacol. 2003, 43 (1): 29-37. 10.1177/0091270002239703.CrossRefPubMed
19.
go back to reference Rawson ES, Clarkson PM, Price TB, Miles MP: Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Phys Scand. 2002, 174 (1): 57-65. 10.1046/j.1365-201x.2002.00924.x.CrossRef Rawson ES, Clarkson PM, Price TB, Miles MP: Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Phys Scand. 2002, 174 (1): 57-65. 10.1046/j.1365-201x.2002.00924.x.CrossRef
20.
go back to reference Persky AM, Brazeau GA, Hochhaus G: Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003, 42 (6): 557-574. 10.2165/00003088-200342060-00005.CrossRefPubMed Persky AM, Brazeau GA, Hochhaus G: Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003, 42 (6): 557-574. 10.2165/00003088-200342060-00005.CrossRefPubMed
Metadata
Title
Comparison of new forms of creatine in raising plasma creatine levels
Authors
Ralf Jäger
Roger C Harris
Martin Purpura
Marc Francaux
Publication date
01-12-2007
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-4-17

Other articles of this Issue 1/2007

Journal of the International Society of Sports Nutrition 1/2007 Go to the issue