Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Research

Comparison of CT values in traditional trajectory, traditional cortical bone trajectory, and modified cortical bone trajectory

Authors: Dongshan Liu, Alafate Kahaer, Yixi Wang, Rui Zhang, Abulikemu Maiaiti, Xieraili Maimaiti, Zhihao Zhou, Wenjie Shi, Zihao Cui, Tao Zhang, Longfei Li, Paerhati Rexiti

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

To compare the CT values and length of the screw tracks of traditional trajectory (TT), cortical bone trajectory (CBT), and modified cortical bone trajectory (MCBT) screws and investigate the effects on the biomechanics of lumbar fixation.

Methods

CT scan data of 60 L4 and L5 lumbar spine were retrieved and divided into 4 groups (10 male and 10 female cases in the 20–30 years old group and 20 male and 20 female cases in the 30–40 years old group). 3-dimentional (3D) model were established using Mimics 19.0 for each group and the placement of three techniques was simulated on the L4 and L5, and the part of the bone occupied by the screw track was set as the region of interest (ROI). The mean CT value and the actual length of the screw track were measured by Mimics 19.0.

Results

The CT values of ROI for the three techniques were significantly different between the same gander in each age group (P < 0.05). The difference of screw track lengths for CBT and MCBT in the male and female is significant (P < 0.05).

Conclusions

According to the CT values of the three screw tracks: MCBT > CBT > TT, the MCBT screw track has greater bone-screw surface strength and longer screw tracks than CBT, which is easier to reach the anterior column of the vertebral body contributing to superior biomechanical properties.
Literature
1.
go back to reference Boucher HH. A method of spinal fusion. J Bone Joint Surg Br. 1959;41-B:248–59.CrossRef Boucher HH. A method of spinal fusion. J Bone Joint Surg Br. 1959;41-B:248–59.CrossRef
2.
go back to reference Perna F, Borghi R, Pilla F, Stefanini N, Mazzotti A, Chehrassan M. Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg. 2016;100:165–9.CrossRef Perna F, Borghi R, Pilla F, Stefanini N, Mazzotti A, Chehrassan M. Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg. 2016;100:165–9.CrossRef
3.
go back to reference Rosinski AA, Mittal A, Odeh K, Ungurean V, Leasure J, Telles C, Kondrashov D. Alternatives to traditional pedicle screws for posterior fixation of the degenerative lumbar spine. JBJS Rev. 2021;9(7):10.CrossRef Rosinski AA, Mittal A, Odeh K, Ungurean V, Leasure J, Telles C, Kondrashov D. Alternatives to traditional pedicle screws for posterior fixation of the degenerative lumbar spine. JBJS Rev. 2021;9(7):10.CrossRef
4.
go back to reference Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9:366–73.CrossRef Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9:366–73.CrossRef
5.
go back to reference Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertionaltorque during pedicle screwing using cortical bone trajectory technique. Spine. 2014;39:E240-245.CrossRef Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertionaltorque during pedicle screwing using cortical bone trajectory technique. Spine. 2014;39:E240-245.CrossRef
6.
go back to reference Arzoglou V. Lumbar fixation using the cortical bone trajectory fixation: a single surgeon’s experience with 3-year follow-up. Oper Neurosurg (Hagerstown). 2022;22:87–100.CrossRef Arzoglou V. Lumbar fixation using the cortical bone trajectory fixation: a single surgeon’s experience with 3-year follow-up. Oper Neurosurg (Hagerstown). 2022;22:87–100.CrossRef
7.
go back to reference Rexiti P, Abudurexiti T, Abuduwali N, Wang S, Sheng W. Measurement of lumbar isthmus parameters for modified starting points for cortical bone trajectory screws using computed radiography. Am J Transl Res. 2018;10:2413–23. Rexiti P, Abudurexiti T, Abuduwali N, Wang S, Sheng W. Measurement of lumbar isthmus parameters for modified starting points for cortical bone trajectory screws using computed radiography. Am J Transl Res. 2018;10:2413–23.
8.
go back to reference Rexiti P, Aierken G, Wang S, Abudurexiti T, Abuduwali N, Deng Q, Guo H, Sheng W. Anatomical research on strength of screw track fixation in modified cortical bone trajectory for osteoporosis lumbar spine. Am J Transl Res. 2019;11:6850–9. Rexiti P, Aierken G, Wang S, Abudurexiti T, Abuduwali N, Deng Q, Guo H, Sheng W. Anatomical research on strength of screw track fixation in modified cortical bone trajectory for osteoporosis lumbar spine. Am J Transl Res. 2019;11:6850–9.
9.
go back to reference Rexiti P, Aierken A, Sadeer A, Wang S, Abuduwali N, Deng Q, Sheng WB, Guo HL. Anatomy and imaging studies on cortical bone screw freehand placement applying anatomical targeting technology. Orthop Surg. 2020;12:1954–62.CrossRef Rexiti P, Aierken A, Sadeer A, Wang S, Abuduwali N, Deng Q, Sheng WB, Guo HL. Anatomy and imaging studies on cortical bone screw freehand placement applying anatomical targeting technology. Orthop Surg. 2020;12:1954–62.CrossRef
10.
go back to reference Campbell GM, Glüer CC. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation. Curr Opin Rheumatol. 2017;29(4):402–9.CrossRef Campbell GM, Glüer CC. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation. Curr Opin Rheumatol. 2017;29(4):402–9.CrossRef
11.
go back to reference Maitirouzi J, Luo H, Zhou Z, Ren H, Rexiti P. Finite element analysis of human lumbar vertebrae in internal fixation system model with different bone density trajectories. Int J Artif Organs. 2022;45:478–87.CrossRef Maitirouzi J, Luo H, Zhou Z, Ren H, Rexiti P. Finite element analysis of human lumbar vertebrae in internal fixation system model with different bone density trajectories. Int J Artif Organs. 2022;45:478–87.CrossRef
12.
go back to reference Zhou ZH, Kahaer A, Wang YX, Liu D, Maimaiti X, Shi W, Rexiti P. Biomechanical properties of traditional trajectory screw technique and modified cortical bone trajectory technique: a finite element analysis. Chin J Tissue Eng Res. 2022;26:2789–94. Zhou ZH, Kahaer A, Wang YX, Liu D, Maimaiti X, Shi W, Rexiti P. Biomechanical properties of traditional trajectory screw technique and modified cortical bone trajectory technique: a finite element analysis. Chin J Tissue Eng Res. 2022;26:2789–94.
13.
go back to reference Kahaer A, Maimaiti X, Maitirouzi J, Wang S, Shi W, Abuduwaili N, Zhou Z, Liu D, Maimaiti A, Rexiti P. Biomechanical investigation of the hybrid modified cortical bone screw-pedicle screw fixation technique: Finite-element analysis. Front Surg. 2022;9: 911742.CrossRef Kahaer A, Maimaiti X, Maitirouzi J, Wang S, Shi W, Abuduwaili N, Zhou Z, Liu D, Maimaiti A, Rexiti P. Biomechanical investigation of the hybrid modified cortical bone screw-pedicle screw fixation technique: Finite-element analysis. Front Surg. 2022;9: 911742.CrossRef
14.
go back to reference Ren H, Maitirouzi J, Rexiti P, Luo H. Finite element analysis of lumbar vertebrae under the pull-out strength of screw in cortical bone trajectory technique. Chin J Tissue Eng Res. 2021:255771–5776. Ren H, Maitirouzi J, Rexiti P, Luo H. Finite element analysis of lumbar vertebrae under the pull-out strength of screw in cortical bone trajectory technique. Chin J Tissue Eng Res. 2021:255771–5776.
15.
go back to reference Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine. 1988;13:1012–8.CrossRef Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine. 1988;13:1012–8.CrossRef
16.
go back to reference Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech. 2013;26:E248-253.CrossRef Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech. 2013;26:E248-253.CrossRef
17.
go back to reference Matsukawa K, Taguchi E, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine. 2015;40:E873-878.CrossRef Matsukawa K, Taguchi E, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine. 2015;40:E873-878.CrossRef
18.
go back to reference Jin H, Xu D, Pan X. CT value of bone in bone-screw interface: comparison between cortical screws and traditional pedicle screws. Chin J Spine Spinal Cord. 2016;26:1115–20. Jin H, Xu D, Pan X. CT value of bone in bone-screw interface: comparison between cortical screws and traditional pedicle screws. Chin J Spine Spinal Cord. 2016;26:1115–20.
19.
go back to reference Zhang RJ, Li HM, Gao H, Jia CY, Xing T, Shen CL. Associations between the Hounsfield unit values of different trajectories and bone mineral density of vertebrae: cortical bone and traditional trajectories. Am J Transl Res. 2020;12:3906–16. Zhang RJ, Li HM, Gao H, Jia CY, Xing T, Shen CL. Associations between the Hounsfield unit values of different trajectories and bone mineral density of vertebrae: cortical bone and traditional trajectories. Am J Transl Res. 2020;12:3906–16.
20.
go back to reference Kojima K, Asamoto S, Kobayashi Y, Ishikawa M, Fukui Y. Cortical bone trajectory and traditional trajectory–a radiological evaluation of screw-bone contact. Acta Neurochir (Wien). 2015;157:1173–8.CrossRef Kojima K, Asamoto S, Kobayashi Y, Ishikawa M, Fukui Y. Cortical bone trajectory and traditional trajectory–a radiological evaluation of screw-bone contact. Acta Neurochir (Wien). 2015;157:1173–8.CrossRef
21.
go back to reference Soldozy S, Montgomery SR Jr, Sarathy D, Young S, Skaff A, Desai B, Sokolowski JD, Sandhu FA, Voyadzis JM, Yağmurlu K, Buchholz AL, Shaffrey ME, Syed HR. Diagnostic, surgical, and technical considerations for lumbar interbody fusion in patients with osteopenia and osteoporosis: a systematic review. Brain Sci. 2021;11:241.CrossRef Soldozy S, Montgomery SR Jr, Sarathy D, Young S, Skaff A, Desai B, Sokolowski JD, Sandhu FA, Voyadzis JM, Yağmurlu K, Buchholz AL, Shaffrey ME, Syed HR. Diagnostic, surgical, and technical considerations for lumbar interbody fusion in patients with osteopenia and osteoporosis: a systematic review. Brain Sci. 2021;11:241.CrossRef
22.
23.
go back to reference Marie-Hardy L, Pascal-Moussellard H, Barnaba A, Bonaccorsi R, Scemama C. Screw loosening in posterior spine fusion: prevalence and risk factors. Global Spine J. 2020;10:598–602.CrossRef Marie-Hardy L, Pascal-Moussellard H, Barnaba A, Bonaccorsi R, Scemama C. Screw loosening in posterior spine fusion: prevalence and risk factors. Global Spine J. 2020;10:598–602.CrossRef
24.
go back to reference Kanno H, Onoda Y, Hashimoto K, Aizawa T, Ozawa H. Innovation of surgical techniques for screw fixation in patients with osteoporotic spine. J Clin Med. 2022;11:2577.CrossRef Kanno H, Onoda Y, Hashimoto K, Aizawa T, Ozawa H. Innovation of surgical techniques for screw fixation in patients with osteoporotic spine. J Clin Med. 2022;11:2577.CrossRef
25.
go back to reference Singh V, Mahajan R, Das K, Chhabra HS, Rustagi T. Surgical trend analysis for use of cement augmented pedicle screws in osteoporosis of spine: a systematic review (2000–2017). Global Spine J. 2019;9:783–95.CrossRef Singh V, Mahajan R, Das K, Chhabra HS, Rustagi T. Surgical trend analysis for use of cement augmented pedicle screws in osteoporosis of spine: a systematic review (2000–2017). Global Spine J. 2019;9:783–95.CrossRef
26.
go back to reference Richardson ML, Genant HK, Cann CE, Ettinger B, Gordan GS, Kolb FO, Reiser UJ. Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop Relat Res. 1985;195:224–38.CrossRef Richardson ML, Genant HK, Cann CE, Ettinger B, Gordan GS, Kolb FO, Reiser UJ. Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop Relat Res. 1985;195:224–38.CrossRef
27.
go back to reference Pinto EM, Neves JR, Teixeira A, Frada R, Atilano P, Oliveira F, Veigas T, Miranda A. Efficacy of Hounsfield units measured by lumbar computer tomography on bone density assessment: a systematic review. Spine. 2022;47:702–10.CrossRef Pinto EM, Neves JR, Teixeira A, Frada R, Atilano P, Oliveira F, Veigas T, Miranda A. Efficacy of Hounsfield units measured by lumbar computer tomography on bone density assessment: a systematic review. Spine. 2022;47:702–10.CrossRef
28.
go back to reference Zou D, Sun Z, Zhou S, Zhong W, Li W. Hounsfield units value is a better predictor of pedicle screw loosening than the T-score of DXA in patients with lumbar degenerative diseases. Eur Spine J. 2020;29:1105–11.CrossRef Zou D, Sun Z, Zhou S, Zhong W, Li W. Hounsfield units value is a better predictor of pedicle screw loosening than the T-score of DXA in patients with lumbar degenerative diseases. Eur Spine J. 2020;29:1105–11.CrossRef
29.
go back to reference Berger-Groch J, Thiesen DM, Ntalos D, Hennes F, Hartel MJ. Assessment of bone quality at the lumbar and sacral spine using CT scans: a retrospective feasibility study in 50 comparing CT and DXA data. Eur Spine J. 2020;29:1098–104.CrossRef Berger-Groch J, Thiesen DM, Ntalos D, Hennes F, Hartel MJ. Assessment of bone quality at the lumbar and sacral spine using CT scans: a retrospective feasibility study in 50 comparing CT and DXA data. Eur Spine J. 2020;29:1098–104.CrossRef
30.
go back to reference Ikeura A, Kushida T, Oe K, Kotani Y, Ando M, Adachi T, Saito T. Correlation between the computed tomography values of the screw path and pedicle screw pullout strength: an experimental study in porcine vertebrae. Asian Spine J. 2020;14:265–72.CrossRef Ikeura A, Kushida T, Oe K, Kotani Y, Ando M, Adachi T, Saito T. Correlation between the computed tomography values of the screw path and pedicle screw pullout strength: an experimental study in porcine vertebrae. Asian Spine J. 2020;14:265–72.CrossRef
31.
go back to reference Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability. Spine. 1993;18:2240–5.CrossRef Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability. Spine. 1993;18:2240–5.CrossRef
32.
go back to reference Li B, Jiang B, Fu Z, Zhang D, Wang T. Accurate determination of isthmus of lumbar pedicle: a morphometric study using reformatted computed tomographic images. Spine. 2004;29:2438–44.CrossRef Li B, Jiang B, Fu Z, Zhang D, Wang T. Accurate determination of isthmus of lumbar pedicle: a morphometric study using reformatted computed tomographic images. Spine. 2004;29:2438–44.CrossRef
33.
go back to reference Edwards WT, Zheng Y, Ferrara LA, Yuan HA. Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine. 2001;26:218–25.CrossRef Edwards WT, Zheng Y, Ferrara LA, Yuan HA. Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine. 2001;26:218–25.CrossRef
34.
go back to reference Fujiwara S, Ohnishi Y, Iwatsuki K, Kishima H. Cortical bone trajectory fixation cause low compression force in anterior vertebral column. N Am Spine Soc J. 2022;10: 100113. Fujiwara S, Ohnishi Y, Iwatsuki K, Kishima H. Cortical bone trajectory fixation cause low compression force in anterior vertebral column. N Am Spine Soc J. 2022;10: 100113.
35.
go back to reference Ueno M, Imura T, Inoue G, Takaso M. Posterior corrective fusion using a double-trajectory technique (cortical bone trajectory combined with traditional trajectory) for degenerative lumbar scoliosis with osteoporosis: technical note. J Neurosurg Spine. 2013;19:600–7.CrossRef Ueno M, Imura T, Inoue G, Takaso M. Posterior corrective fusion using a double-trajectory technique (cortical bone trajectory combined with traditional trajectory) for degenerative lumbar scoliosis with osteoporosis: technical note. J Neurosurg Spine. 2013;19:600–7.CrossRef
36.
go back to reference Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res. 1992;284:34–46.CrossRef Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res. 1992;284:34–46.CrossRef
37.
go back to reference Varghese V, Krishnan V, Kumar GS. Evaluating pedicle-screw instrumentation using decision-tree analysis based on pullout strength. Asian Spine J. 2018;12:611–21.CrossRef Varghese V, Krishnan V, Kumar GS. Evaluating pedicle-screw instrumentation using decision-tree analysis based on pullout strength. Asian Spine J. 2018;12:611–21.CrossRef
38.
go back to reference Chen WJ, Wang HL, Jiang JY, Lu F, Ma X, Xia X, Wang L. Anatomic study on lumbar cortical bone trajectory of adults. Chin J Orthop. 2015;35:1213–21. Chen WJ, Wang HL, Jiang JY, Lu F, Ma X, Xia X, Wang L. Anatomic study on lumbar cortical bone trajectory of adults. Chin J Orthop. 2015;35:1213–21.
39.
go back to reference Penner F, Marengo N, Ajello M, Petrone S, Cofano F, Veneziani Santonio F, Zenga F, Garbossa D. Preoperative 3D CT planning for cortical bone trajectory screws: a retrospective radiological cohort study. World Neurosurg. 2019;126:e1468–74.CrossRef Penner F, Marengo N, Ajello M, Petrone S, Cofano F, Veneziani Santonio F, Zenga F, Garbossa D. Preoperative 3D CT planning for cortical bone trajectory screws: a retrospective radiological cohort study. World Neurosurg. 2019;126:e1468–74.CrossRef
40.
go back to reference Shi W, Aierken G, Wang S, Abuduwali N, Xia Y, Rezhake R, Zhao S, Zhou M, Jianabuli, Sheng W, Rexiti P. Application study of three-dimensional printed navigation template between traditional and novel cortical bone trajectory on osteoporosis lumbar spine. J Clin Neurosci. 2021;85:41–8.CrossRef Shi W, Aierken G, Wang S, Abuduwali N, Xia Y, Rezhake R, Zhao S, Zhou M, Jianabuli, Sheng W, Rexiti P. Application study of three-dimensional printed navigation template between traditional and novel cortical bone trajectory on osteoporosis lumbar spine. J Clin Neurosci. 2021;85:41–8.CrossRef
41.
go back to reference Buza JA 3rd, Good CR, Lehman RA Jr, Pollina J, Chua RV, Buchholz AL, Gum JL. Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: workflow and technical tips for safe and efficient use. J Robot Surg. 2021;15(1):13–23.CrossRef Buza JA 3rd, Good CR, Lehman RA Jr, Pollina J, Chua RV, Buchholz AL, Gum JL. Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: workflow and technical tips for safe and efficient use. J Robot Surg. 2021;15(1):13–23.CrossRef
42.
go back to reference Li Y, Chen L, Liu Y, Ding H, Lu H, Pan A, Zhang X, Hai Y, Guan L. Accuracy and safety of robot-assisted cortical bone trajectory screw placement: a comparison of robot-assisted technique with fluoroscopy-assisted approach. BMC Musculoskelet Disord. 2022;23(1):328.CrossRef Li Y, Chen L, Liu Y, Ding H, Lu H, Pan A, Zhang X, Hai Y, Guan L. Accuracy and safety of robot-assisted cortical bone trajectory screw placement: a comparison of robot-assisted technique with fluoroscopy-assisted approach. BMC Musculoskelet Disord. 2022;23(1):328.CrossRef
44.
go back to reference McLachlin SD, Beaton BJ, Sabo MT, Gurr KR, Bailey SI, Bailey CS, Dunning CE. Comparing the fixation of a modified hollow screw versus a conventional solid screw in human sacra under cyclic loading. Spine. 2008;33:1870–5.CrossRef McLachlin SD, Beaton BJ, Sabo MT, Gurr KR, Bailey SI, Bailey CS, Dunning CE. Comparing the fixation of a modified hollow screw versus a conventional solid screw in human sacra under cyclic loading. Spine. 2008;33:1870–5.CrossRef
Metadata
Title
Comparison of CT values in traditional trajectory, traditional cortical bone trajectory, and modified cortical bone trajectory
Authors
Dongshan Liu
Alafate Kahaer
Yixi Wang
Rui Zhang
Abulikemu Maiaiti
Xieraili Maimaiti
Zhihao Zhou
Wenjie Shi
Zihao Cui
Tao Zhang
Longfei Li
Paerhati Rexiti
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01893-5

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue