Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2006

01-01-2006 | Clinical Investigation

Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage

Authors: Akiyasu Kanamori, Azusa Nagai-Kusuhara, Michael F. T. Escaño, Hidetaka Maeda, Makoto Nakamura, Akira Negi

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2006

Login to get access

Abstract

Background

The aim was to compare the ability of confocal scanning laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and optical coherence tomography (OCT) to discriminate eyes with ocular hypertension (OHT), glaucoma-suspect eyes (GS) or early glaucomatous eyes (EG) from normal eyes.

Methods

Ocular hypertension, GS, and EG were defined as normal disc with intraocular pressure >21 mmHg, glaucomatous disc without visual field loss, and glaucomatous disc accompanying the early glaucomatous visual filed loss respectively. Ninety-three normal eyes, 26 OHT, 55 GS, and 67 EG were enrolled. Optic disc configuration was analyzed by CSLO (version 3.04), whereas retinal nerve fiber layer thickness was analyzed by SLP (GDx-VCC; version 5.3.2) and OCT-1 (version A6X1) in each individual. The measurements were compared in the four groups of patients. Receiver operating characteristic curve (ROC) and area under the curve (AUC) discriminating OHT, GS or EG from normal eyes were compared for the three instruments.

Results

Most parameters in GS and EG eyes showed significant differences compared with normal eyes. However, there were few significant differences between normal and OHT eyes. No significant differences were observed in AUCs between SLP and OCT. In EG eyes, the greatest AUC parameter in OCT (inferior—120; 0.932) had a higher AUC than that in CSLO (vertical cup/disc ratio; 0.845; P=0.017). In GS, the greatest AUC parameter in OCT (average retinal nerve fiber layer [RNFL] thickness; 0.869; P=0.002) and SLP (nerve fiber indicator [NFI]; 0.875; P=0.002) had higher AUC than that in CSLO (vertical cup/disc ratio; 0.720).

Conclusions

Three instruments were useful in identifying GS and EG eyes. For glaucomatous eyes with or without early visual field defects, SLP and OCT performed similarly or had better discriminating abilities compared with CSLO.
Literature
1.
go back to reference Altman DG (1991) Practical statistics for medical research. Chapman and Hall, New York, pp 397–425 Altman DG (1991) Practical statistics for medical research. Chapman and Hall, New York, pp 397–425
2.
go back to reference Caprioli J, Park HJ, Ugurlu S, Hoffman D (1998) Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest Ophthalmol Vis Sci 39:2321–2328PubMed Caprioli J, Park HJ, Ugurlu S, Hoffman D (1998) Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest Ophthalmol Vis Sci 39:2321–2328PubMed
3.
go back to reference Cioffi GA, Robin AL, Eastman RD et al (1993) Confocal laser scanning ophthalmoscope. Reproducibility of optic nerve head topographic measurements with the confocal laser scanning ophthalmoscope. Ophthalmology 100:57–62PubMed Cioffi GA, Robin AL, Eastman RD et al (1993) Confocal laser scanning ophthalmoscope. Reproducibility of optic nerve head topographic measurements with the confocal laser scanning ophthalmoscope. Ophthalmology 100:57–62PubMed
4.
go back to reference Colen TP, Tang NE, Mulder PG, Lemij HG (2004) Sensitivity and specificity of new GDx parameters. J Glaucoma 13:28–33CrossRefPubMed Colen TP, Tang NE, Mulder PG, Lemij HG (2004) Sensitivity and specificity of new GDx parameters. J Glaucoma 13:28–33CrossRefPubMed
5.
go back to reference Greaney MJ, Hoffman DC, Garway-Heath DF, Nakla M, Coleman AL, Caprioli J (2002) Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest Ophthalmol Vis Sci 43:140–145PubMed Greaney MJ, Hoffman DC, Garway-Heath DF, Nakla M, Coleman AL, Caprioli J (2002) Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest Ophthalmol Vis Sci 43:140–145PubMed
6.
go back to reference Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMed Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMed
7.
go back to reference Hee MR, Izatt JA, Swanson EA et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332PubMed Hee MR, Izatt JA, Swanson EA et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332PubMed
8.
go back to reference Hermann MM, Theofylaktopoulos I, Bangard N et al (2004) Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br J Ophthalmol 88:761–765CrossRefPubMed Hermann MM, Theofylaktopoulos I, Bangard N et al (2004) Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br J Ophthalmol 88:761–765CrossRefPubMed
9.
go back to reference Hoh ST, Ishikawa H, Greenfield DS, Liebmann JM, Chew SJ, Ritch R (1998) Peripapillary nerve fiber layer thickness measurement reproducibility using scanning laser polarimetry. J Glaucoma 7:12–15PubMedCrossRef Hoh ST, Ishikawa H, Greenfield DS, Liebmann JM, Chew SJ, Ritch R (1998) Peripapillary nerve fiber layer thickness measurement reproducibility using scanning laser polarimetry. J Glaucoma 7:12–15PubMedCrossRef
10.
go back to reference Iester M, Broadway DC, Mikelberg FS, Drance SM (1997) A comparison of healthy, ocular hypertensive, and glaucomatous optic disc topographic parameters. J Glaucoma 6:363–370PubMed Iester M, Broadway DC, Mikelberg FS, Drance SM (1997) A comparison of healthy, ocular hypertensive, and glaucomatous optic disc topographic parameters. J Glaucoma 6:363–370PubMed
11.
go back to reference Iester M, Mikelberg FS, Drance SM (1997) The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 104:545–548PubMed Iester M, Mikelberg FS, Drance SM (1997) The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 104:545–548PubMed
12.
go back to reference Jonas JB, Schmidt AM, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO (1992) Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 33:2012–2018PubMed Jonas JB, Schmidt AM, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO (1992) Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 33:2012–2018PubMed
13.
go back to reference Kanamori A, Escano MF, Eno A et al (2003) Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica 217:273–278CrossRefPubMed Kanamori A, Escano MF, Eno A et al (2003) Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica 217:273–278CrossRefPubMed
14.
go back to reference Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 135:513–520CrossRefPubMed Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 135:513–520CrossRefPubMed
15.
go back to reference Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837CrossRefPubMed Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837CrossRefPubMed
16.
go back to reference Mistlberger A, Liebmann JM, Greenfield DS et al (2002) Assessment of optic disc anatomy and nerve fiber layer thickness in ocular hypertensive subjects with normal short-wavelength automated perimetry. Ophthalmology 109:1362–1366CrossRefPubMed Mistlberger A, Liebmann JM, Greenfield DS et al (2002) Assessment of optic disc anatomy and nerve fiber layer thickness in ocular hypertensive subjects with normal short-wavelength automated perimetry. Ophthalmology 109:1362–1366CrossRefPubMed
17.
go back to reference Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J (2004) Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 137:228–235CrossRefPubMed Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J (2004) Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 137:228–235CrossRefPubMed
18.
go back to reference Parisi V, Manni G, Centofanti M, Gandolfi SA, Olzi D, Bucci MG (2001) Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 108:905–912CrossRefPubMed Parisi V, Manni G, Centofanti M, Gandolfi SA, Olzi D, Bucci MG (2001) Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 108:905–912CrossRefPubMed
19.
go back to reference Poinoosawmy D, Fontana L, Wu JX et al (1997) Variation of nerve fiber layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 81:350–354PubMedCrossRef Poinoosawmy D, Fontana L, Wu JX et al (1997) Variation of nerve fiber layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 81:350–354PubMedCrossRef
20.
go back to reference Quigley HA, Addicks EM (1982) Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 100:807–814PubMed Quigley HA, Addicks EM (1982) Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 100:807–814PubMed
21.
go back to reference Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464PubMed Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464PubMed
22.
go back to reference Quigley HA, Brown AE, Morrison JD, Drance SM (1990) The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 108:51–57PubMed Quigley HA, Brown AE, Morrison JD, Drance SM (1990) The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 108:51–57PubMed
23.
go back to reference Radius RL, Anderson DR (1979) The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol 97:948–950PubMed Radius RL, Anderson DR (1979) The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol 97:948–950PubMed
24.
go back to reference Schuman JS, Pedut-Kloizman T, Hertzmark E et al (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898PubMed Schuman JS, Pedut-Kloizman T, Hertzmark E et al (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898PubMed
25.
go back to reference Shimizu N, Nomura H, Ando F et al (2003) Refractive errors and factors associated with myopia in an adult Japanese population. Jpn J Ophthalmol 47:6–12CrossRefPubMed Shimizu N, Nomura H, Ando F et al (2003) Refractive errors and factors associated with myopia in an adult Japanese population. Jpn J Ophthalmol 47:6–12CrossRefPubMed
26.
go back to reference Sommer A, Miller NR, Pollack I, Maumenee AE, George T (1997) The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol 95:2149–2156 Sommer A, Miller NR, Pollack I, Maumenee AE, George T (1997) The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol 95:2149–2156
27.
go back to reference Yamazaki Y, Yoshikawa K, Kunimatsu S et al (1999) Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol 43:392–397CrossRefPubMed Yamazaki Y, Yoshikawa K, Kunimatsu S et al (1999) Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol 43:392–397CrossRefPubMed
28.
go back to reference Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA (2000) Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 107:2272–2277CrossRefPubMed Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA (2000) Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 107:2272–2277CrossRefPubMed
29.
go back to reference Zangwill LM, Bowd C, Berry CC et al (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 119:985–993PubMed Zangwill LM, Bowd C, Berry CC et al (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 119:985–993PubMed
30.
go back to reference Zeyen TG, Caprioli J (1993) Progression of disc and field damage in early glaucoma. Arch Ophthalmol 111:62–65PubMed Zeyen TG, Caprioli J (1993) Progression of disc and field damage in early glaucoma. Arch Ophthalmol 111:62–65PubMed
31.
go back to reference Zhou Q, Weinreb RN (2002) Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 43:2221–2228PubMed Zhou Q, Weinreb RN (2002) Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 43:2221–2228PubMed
Metadata
Title
Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage
Authors
Akiyasu Kanamori
Azusa Nagai-Kusuhara
Michael F. T. Escaño
Hidetaka Maeda
Makoto Nakamura
Akira Negi
Publication date
01-01-2006
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2006
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-005-0029-0

Other articles of this Issue 1/2006

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2006 Go to the issue

Announcements

Announcements