Skip to main content
Top
Published in: Japanese Journal of Ophthalmology 4/2018

01-07-2018 | Clinical Investigation

Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma

Authors: Bo Ram Seol, Byeong Wook Yoo, Young Kook Kim, Jin Wook Jeoung, Ki Ho Park

Published in: Japanese Journal of Ophthalmology | Issue 4/2018

Login to get access

Abstract

Purpose

To compare the changes in macular ganglion cell-inner plexiform layer (GCIPL) defect between stable and progression primary open-angle glaucoma (POAG) groups.

Study design

Retrospective observational study.

Methods

A total of 100 POAG eyes with localized retinal nerve fiber layer (RNFL) defect and corresponding macular GCIPL defect were selected for this study. Glaucoma progression was defined by either structural or functional deterioration. The number of abnormal superpixels on macular GCIPL deviation maps was calculated using a customized MATLAB program. GCIPL defect change was evaluated in two aspects: increased angular width and increased area. The defect patterns were categorized and compared between the stable and progression groups.

Results

The increase rate of angular width of GCIPL defect was higher in the progression group than in the stable group (P = 0.029). In respect to the area of GCIPL defect, there was no statistically significant differences between the groups (P = 0.227). Twenty-seven (27) of 100 (27.0%) eyes showed increased angular width of GCIPL defect. It was more frequent in the progression group than in the stable group (P = 0.043). Seventeen (17) of 27 (63.0%) eyes showed the away from the horizontal temporal raphe type progression and it was the most common change pattern of angular width of GCIPL defect.

Conclusions

Increased angular width of GCIPL defect was the more prominent feature of change, and was more frequent in the progression group than in the stable group. Among the types of GCIPL defect classified, the away from the horizontal temporal raphe type was the most common.
Literature
1.
go back to reference Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.CrossRefPubMed Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.CrossRefPubMed
2.
go back to reference Sommer A, Miller NR, Pollack I, Maumenee AE, George T. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977;95:2149–56.CrossRefPubMed Sommer A, Miller NR, Pollack I, Maumenee AE, George T. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977;95:2149–56.CrossRefPubMed
4.
go back to reference Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.CrossRefPubMedPubMedCentral Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.CrossRefPubMedPubMedCentral
5.
go back to reference Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA, et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol. 2012;96:1420–5.CrossRefPubMedPubMedCentral Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA, et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol. 2012;96:1420–5.CrossRefPubMedPubMedCentral
6.
go back to reference Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119:1151–8.CrossRefPubMed Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119:1151–8.CrossRefPubMed
7.
go back to reference Kim MJ, Park KH, Yoo BW, Jeoung JW, Kim HC, Kim DM. Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect. Acta ophthalmol. 2015;93:e22–8.CrossRefPubMed Kim MJ, Park KH, Yoo BW, Jeoung JW, Kim HC, Kim DM. Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect. Acta ophthalmol. 2015;93:e22–8.CrossRefPubMed
8.
go back to reference Jeoung JW, Choi YJ, Park KH, Kim DM. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:4422–9.CrossRefPubMed Jeoung JW, Choi YJ, Park KH, Kim DM. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:4422–9.CrossRefPubMed
9.
go back to reference Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, Cirineo N, Knipping S, Giaconi J, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156:1297–307.CrossRefPubMed Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, Cirineo N, Knipping S, Giaconi J, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156:1297–307.CrossRefPubMed
10.
go back to reference Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 2015;56:4857–64.CrossRefPubMed Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 2015;56:4857–64.CrossRefPubMed
11.
go back to reference Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol. 1973;12:814–29.PubMed Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol. 1973;12:814–29.PubMed
12.
go back to reference Suh MH, Kim DM, Kim YK, Kim TW, Park KH. Patterns of progression of localized retinal nerve fibre layer defect on red-free fundus photographs in normal-tension glaucoma. Eye. 2010;24:857–63.CrossRefPubMed Suh MH, Kim DM, Kim YK, Kim TW, Park KH. Patterns of progression of localized retinal nerve fibre layer defect on red-free fundus photographs in normal-tension glaucoma. Eye. 2010;24:857–63.CrossRefPubMed
13.
go back to reference Quigley HA, Reacher M, Katz J, Strahlman E, Gilbert D, Scott R. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993;100:1800–7.CrossRefPubMed Quigley HA, Reacher M, Katz J, Strahlman E, Gilbert D, Scott R. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993;100:1800–7.CrossRefPubMed
14.
go back to reference Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.CrossRefPubMedPubMedCentral Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.CrossRefPubMedPubMedCentral
15.
go back to reference Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51:5724–30.CrossRefPubMedPubMedCentral Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51:5724–30.CrossRefPubMedPubMedCentral
16.
go back to reference Le PV, Tan O, Chopra V, Francis BA, Ragab O, Varma R, et al. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Invest Ophthalmol Vis Sci. 2013;54:4287–95.CrossRefPubMedPubMedCentral Le PV, Tan O, Chopra V, Francis BA, Ragab O, Varma R, et al. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Invest Ophthalmol Vis Sci. 2013;54:4287–95.CrossRefPubMedPubMedCentral
17.
go back to reference Kim KE, Park KH, Yoo BW, Jeoung JW, Kim DM, Kim HC. Topographic localization of macular retinal ganglion cell loss associated with localized peripapillary retinal nerve fiber layer defect. Invest Ophthalmol Vis Sci. 2014;55:3501–8.CrossRefPubMed Kim KE, Park KH, Yoo BW, Jeoung JW, Kim DM, Kim HC. Topographic localization of macular retinal ganglion cell loss associated with localized peripapillary retinal nerve fiber layer defect. Invest Ophthalmol Vis Sci. 2014;55:3501–8.CrossRefPubMed
18.
go back to reference Gupta D, editor. Glaucoma diagnosis and management. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 83. Gupta D, editor. Glaucoma diagnosis and management. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 83.
19.
go back to reference Garvin MK, Abramoff MD, Lee K, Niemeijer M, Sonka M, Kwon YH. 2-D pattern of nerve fiber bundles in glaucoma emerging from spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:483–9.CrossRefPubMedPubMedCentral Garvin MK, Abramoff MD, Lee K, Niemeijer M, Sonka M, Kwon YH. 2-D pattern of nerve fiber bundles in glaucoma emerging from spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:483–9.CrossRefPubMedPubMedCentral
20.
go back to reference Jeong JS, Kang MG, Kim CY, Kim NR. Pattern of macular ganglion cell-inner plexiform layer defect generated by spectral-domain OCT in glaucoma patients and normal subjects. J Glaucoma. 2015;24:583–90.CrossRefPubMed Jeong JS, Kang MG, Kim CY, Kim NR. Pattern of macular ganglion cell-inner plexiform layer defect generated by spectral-domain OCT in glaucoma patients and normal subjects. J Glaucoma. 2015;24:583–90.CrossRefPubMed
Metadata
Title
Comparison of changes of macular ganglion cell-inner plexiform layer defect between stable group and progression group in primary open-angle glaucoma
Authors
Bo Ram Seol
Byeong Wook Yoo
Young Kook Kim
Jin Wook Jeoung
Ki Ho Park
Publication date
01-07-2018
Publisher
Springer Japan
Published in
Japanese Journal of Ophthalmology / Issue 4/2018
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-018-0593-6

Other articles of this Issue 4/2018

Japanese Journal of Ophthalmology 4/2018 Go to the issue