Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2018

Open Access 01-12-2018 | Research article

Comparison of a sports-hydration drink containing high amylose starch with usual hydration practice in Australian rules footballers during intense summer training

Authors: Sinead Mary O’Connell, Richard John Woodman, Ian Lewis Brown, David Julian Vincent, Henry Joseph Binder, Balakrishnan Siddartha Ramakrishna, Graeme Paul Young

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2018

Login to get access

Abstract

Background

Fluid deficits exceeding 1.6% can lead to physical and cognitive impairment in athletes. Sport drinks used by athletes are often hyper-osmolar but this is known to be suboptimal for rehydration in medical settings and does not utilize colonic absorptive capacity. Colonic absorption can be enhanced by fermentative production of short chain fatty acids (SCFA) from substrates such as high amylose maize starch (HAMS). This study therefore compared, in elite Australian Football League (AFL) players at the height of outdoor summer training, a novel dual-action sports oral rehydration strategy that contained HAMS as well as glucose, to their usual rehydration practices (Control). The primary outcome markers of hydration were hematocrit and body weight.

Methods

A randomized single-blind crossover study was undertaken in thirty-one AFL players; twenty-seven completed the study which was conducted on four days (two days in the Intervention arm and two in Control arm). The Intervention arm was comprised a 50-100 g evening preload of an acetylated HAMS (Ingredion Pty Ltd) followed by consumption of a specially formulated sports oral rehydration solution (SpORS) drink during intense training and recovery. Players followed their usual hydration routine in the Control arm. Quantitative assessments of body weight, hematocrit and urine specific gravity were made at three time-points on each day of training: pre-training, post-training (90 min), and at end of recovery (30–60 min later). GPS tracking monitored player exertion.

Results

Across the three time-points, hematocrit was significantly lower and body weight significantly higher in Intervention compared to Control arms (p < 0.02 and p = 0.001 respectively, mixed effects model). Weights were significantly heavier at all three assessment points for Intervention compared to Control arms (Δ = 0.30 ± 0.13, p = 0.02 pre-training; Δ = 0.43 ± 0.14, p = 0.002 post training; and Δ = 0.68 ± 0.14, p < 0.001 for recovery). Between the pre-training and end-of-recovery assessments, the Control arm lost 0.80 kg overall compared with 0.12 kg in the Intervention arm, an 85% lower reduction of bodyweight across the assessment period.

Conclusion

The combination of the significantly lower hematocrit and increased body weight in the Intervention arm represents better hydration not only at the end of training as well as following a recovery period but also at its commencement. The magnitude of the benefit seems sufficient to have an impact on performance and further studies to test this possibility are now indicated.

Trial registration

Trial is listed on the Australian New Zealand Clinical Trials Registry (ACTRN 12613001373763). 
Literature
1.
go back to reference Ramakrishna B. Improving the effectiveness of Oral rehydration therapies. In: Wilson T, Temple NJ, editors. Beverages in nutrition and health. Totowa: NJ. Humana Press Inc; 2004. p. 315–26. Ramakrishna B. Improving the effectiveness of Oral rehydration therapies. In: Wilson T, Temple NJ, editors. Beverages in nutrition and health. Totowa: NJ. Humana Press Inc; 2004. p. 315–26.
3.
go back to reference Rodriguez NR, DiMarco NM, Langley S. American dietetic association, dietitians of Canada, American College of Sports Medicine: position of the American Dietitic associations, dietitians of Canada and the American College of Sports Medicine and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.CrossRef Rodriguez NR, DiMarco NM, Langley S. American dietetic association, dietitians of Canada, American College of Sports Medicine: position of the American Dietitic associations, dietitians of Canada and the American College of Sports Medicine and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.CrossRef
4.
go back to reference Walsh RM, Noakes TD, Hawley JA, Dennis SC. Impaired high-intensity cycling performance time at low levels of dehydration. Int J Sports Med. 1994;15:392–8.CrossRef Walsh RM, Noakes TD, Hawley JA, Dennis SC. Impaired high-intensity cycling performance time at low levels of dehydration. Int J Sports Med. 1994;15:392–8.CrossRef
5.
go back to reference Armstrong LE, Costill DL, Fink WJ. Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc. 1985;17(4):456–61.CrossRef Armstrong LE, Costill DL, Fink WJ. Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc. 1985;17(4):456–61.CrossRef
7.
go back to reference Lopez RM, Casa DJ, Jensen KA, DeMartini JK, Pagnotta KD, Ruiz RC, Roti MW, Stearns RL, Armstrong LE, Maresh CM. Examining the influence of hydration status on physiological responses and running speed during trail running in the heat with controlled exercise intensity. J Strength Cond Res. 2011;25:2944–54.CrossRef Lopez RM, Casa DJ, Jensen KA, DeMartini JK, Pagnotta KD, Ruiz RC, Roti MW, Stearns RL, Armstrong LE, Maresh CM. Examining the influence of hydration status on physiological responses and running speed during trail running in the heat with controlled exercise intensity. J Strength Cond Res. 2011;25:2944–54.CrossRef
8.
go back to reference Rolston DD, Mathan VI. Jejunal and ileal glucose-stimulated water and sodium absorption in tropical enteropathy: implications for oral rehydration therapy. Digestion. 1990;46(1):55–60.CrossRef Rolston DD, Mathan VI. Jejunal and ileal glucose-stimulated water and sodium absorption in tropical enteropathy: implications for oral rehydration therapy. Digestion. 1990;46(1):55–60.CrossRef
10.
go back to reference UNICEF/WHO. Diarrhoea: Why children are still dying and what. can be done; Geneva. 2009. UNICEF/WHO. Diarrhoea: Why children are still dying and what. can be done; Geneva. 2009.
11.
go back to reference Sarker SA, Mahalanabis D, Alam NH, Sharmin S, Khan AM, Fuchs GJ. Reduced osmolarity oral rehydration solution for persistent diarrhea in infants: a randomized controlled clinical trial. J Pediatr. 2001; Apr;138(4):532–8.CrossRef Sarker SA, Mahalanabis D, Alam NH, Sharmin S, Khan AM, Fuchs GJ. Reduced osmolarity oral rehydration solution for persistent diarrhea in infants: a randomized controlled clinical trial. J Pediatr. 2001; Apr;138(4):532–8.CrossRef
12.
go back to reference Ramakrishna BS, Venkataraman S, Srinivasan P, Dash P, Young GP, Binder HJ. Amylase-resistant starch plus oral rehydration solution for cholera. N Engl J Med. 2000;342:308–13.CrossRef Ramakrishna BS, Venkataraman S, Srinivasan P, Dash P, Young GP, Binder HJ. Amylase-resistant starch plus oral rehydration solution for cholera. N Engl J Med. 2000;342:308–13.CrossRef
13.
go back to reference Phillips J, Muir JG, Birkett A, Lu ZX, Jones GP, O'Dea K, Young GP. Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. Am J Clin Nutr. 1995;62:121–30.CrossRef Phillips J, Muir JG, Birkett A, Lu ZX, Jones GP, O'Dea K, Young GP. Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. Am J Clin Nutr. 1995;62:121–30.CrossRef
14.
go back to reference Raghupathy P, Ramakrishna BS, Oommen SP, Ahmed MS, Priyaa G, Dziura J, Young GP, Binder HJ. Amylase-resistant starch as adjunct to oral rehydration therapy in children with diarrhea. J Pediatr Gastroenterol Nutr. 2006; Apr;42(4):362–8.CrossRef Raghupathy P, Ramakrishna BS, Oommen SP, Ahmed MS, Priyaa G, Dziura J, Young GP, Binder HJ. Amylase-resistant starch as adjunct to oral rehydration therapy in children with diarrhea. J Pediatr Gastroenterol Nutr. 2006; Apr;42(4):362–8.CrossRef
16.
go back to reference Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5:e15046.CrossRef Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5:e15046.CrossRef
17.
go back to reference Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL, Rains TM. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr. 2012;142:717–23.CrossRef Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL, Rains TM. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr. 2012;142:717–23.CrossRef
18.
go back to reference Gower BA, Bergman R, Stefanovski D, Darnell B, Ovalle F, Fisher G, Sweatt SK, Resuehr HS, Pelkman C. Baseline insulin sensitivity affects response to high-amylose maize resistant starch in women: a randomized, controlled trial. Nutr Metab (Lond). 2016;13:2.CrossRef Gower BA, Bergman R, Stefanovski D, Darnell B, Ovalle F, Fisher G, Sweatt SK, Resuehr HS, Pelkman C. Baseline insulin sensitivity affects response to high-amylose maize resistant starch in women: a randomized, controlled trial. Nutr Metab (Lond). 2016;13:2.CrossRef
20.
go back to reference Muir JG, Lu ZX, Young GP, Cameron-Smith D, Collier GR, O'Dea K. Resistant starch in the diet increases breath hydrogen and serum acetate in human subjects. Am J Clin Nutr. 1995;61(4):792–9.CrossRef Muir JG, Lu ZX, Young GP, Cameron-Smith D, Collier GR, O'Dea K. Resistant starch in the diet increases breath hydrogen and serum acetate in human subjects. Am J Clin Nutr. 1995;61(4):792–9.CrossRef
21.
go back to reference Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001; Jul;81(3):1031–64.CrossRef Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001; Jul;81(3):1031–64.CrossRef
22.
go back to reference Grabitske HA, Slavin JL. Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutr. 2009; Apr;49(4):327–60.CrossRef Grabitske HA, Slavin JL. Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutr. 2009; Apr;49(4):327–60.CrossRef
23.
go back to reference Popowski LA, Oppliger RA, Lambert GP, Johnson RF, Johnson AK, Gisolfi CV. Blood and urinary measures of hydration status during progressive acute dehydration. Med Sci Sports Exerc. 2001;33(5):747–53.CrossRef Popowski LA, Oppliger RA, Lambert GP, Johnson RF, Johnson AK, Gisolfi CV. Blood and urinary measures of hydration status during progressive acute dehydration. Med Sci Sports Exerc. 2001;33(5):747–53.CrossRef
24.
go back to reference Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol. 1997;82(4):1229–36.CrossRef Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol. 1997;82(4):1229–36.CrossRef
25.
go back to reference Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.CrossRef Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.CrossRef
26.
go back to reference Aldridge G, Baker JS, Davies B. Effects of hydration status on aerobic performance for a group of Male University Rugby players. JEPonline. 2005;8(5):36–42. Aldridge G, Baker JS, Davies B. Effects of hydration status on aerobic performance for a group of Male University Rugby players. JEPonline. 2005;8(5):36–42.
27.
go back to reference Masento NA, Golightly M, Field DT, Butler LT, van Reekum CM. Effects of hydration status on cognitive performance and mood. Brit J Nutr. 2014;111:1841–52.CrossRef Masento NA, Golightly M, Field DT, Butler LT, van Reekum CM. Effects of hydration status on cognitive performance and mood. Brit J Nutr. 2014;111:1841–52.CrossRef
28.
go back to reference Shirreffs SM, Sawka MN. Fluid and electrolyte needs for training, competition, and recovery. J Sports Sci. 2011;29(sup1):S39–46.CrossRef Shirreffs SM, Sawka MN. Fluid and electrolyte needs for training, competition, and recovery. J Sports Sci. 2011;29(sup1):S39–46.CrossRef
29.
go back to reference Ne’de’lec M , McCall A, Carling C, Legall F, Berthoin S and Dupont G. RECOVERY IN SOCCER- Recovery Strategies – Review. Sports Med 2013;43(1):9–22. Ne’de’lec M , McCall A, Carling C, Legall F, Berthoin S and Dupont G. RECOVERY IN SOCCER- Recovery Strategies – Review. Sports Med 2013;43(1):9–22.
Metadata
Title
Comparison of a sports-hydration drink containing high amylose starch with usual hydration practice in Australian rules footballers during intense summer training
Authors
Sinead Mary O’Connell
Richard John Woodman
Ian Lewis Brown
David Julian Vincent
Henry Joseph Binder
Balakrishnan Siddartha Ramakrishna
Graeme Paul Young
Publication date
01-12-2018
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-018-0253-8

Other articles of this Issue 1/2018

Journal of the International Society of Sports Nutrition 1/2018 Go to the issue