Skip to main content
Top
Published in: Brain Structure and Function 4/2018

01-05-2018 | Original Article

Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats

Authors: A. Mannewitz, J. Bock, S. Kreitz, A. Hess, J. Goldschmidt, H. Scheich, Katharina Braun

Published in: Brain Structure and Function | Issue 4/2018

Login to get access

Abstract

Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Literature
go back to reference Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17(9):379–389PubMedCrossRef Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17(9):379–389PubMedCrossRef
go back to reference Brito GN, Brito LS (1990) Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behav Brain Res 36(1–2):127–146PubMedCrossRef Brito GN, Brito LS (1990) Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behav Brain Res 36(1–2):127–146PubMedCrossRef
go back to reference Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641PubMedCrossRef Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641PubMedCrossRef
go back to reference Burwell RD, Amaral DG (1998a) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398(2):179–205PubMedCrossRef Burwell RD, Amaral DG (1998a) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398(2):179–205PubMedCrossRef
go back to reference Burwell RD, Amaral DG (1998b) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391(3):293–321PubMedCrossRef Burwell RD, Amaral DG (1998b) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391(3):293–321PubMedCrossRef
go back to reference Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222PubMedCrossRef Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222PubMedCrossRef
go back to reference Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101(1):8–23PubMedCrossRef Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101(1):8–23PubMedCrossRef
go back to reference Coleman-Mesches K, McGaugh JL (1995) Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res 670(1):75–81PubMedCrossRef Coleman-Mesches K, McGaugh JL (1995) Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res 670(1):75–81PubMedCrossRef
go back to reference Corwin J, Reep R (1998) Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention. Psychobiology 26:87–102 Corwin J, Reep R (1998) Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention. Psychobiology 26:87–102
go back to reference Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220(2):168–190PubMedCrossRef Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220(2):168–190PubMedCrossRef
go back to reference Denenberg VH, Garbanati J, Sherman DA, Yutzey DA, Kaplan R (1978) Infantile stimulation induces brain lateralization in rats. Science 201(4361):1150–1152PubMedCrossRef Denenberg VH, Garbanati J, Sherman DA, Yutzey DA, Kaplan R (1978) Infantile stimulation induces brain lateralization in rats. Science 201(4361):1150–1152PubMedCrossRef
go back to reference Duncan GH, Albanese MC (2003) Is there a role for the parietal lobes in the perception of pain? Adv Neurol 93:69–86PubMed Duncan GH, Albanese MC (2003) Is there a role for the parietal lobes in the perception of pain? Adv Neurol 93:69–86PubMed
go back to reference Endepols H, Sommer S, Backes H, Wiedermann D, Graf R, Hauber W (2010) Effort-Based Decision Making in the rat: an [18F] fluorodeoxyglucose micro positron emission tomography study. J Neurosci 30(29):9708–9714PubMedCrossRef Endepols H, Sommer S, Backes H, Wiedermann D, Graf R, Hauber W (2010) Effort-Based Decision Making in the rat: an [18F] fluorodeoxyglucose micro positron emission tomography study. J Neurosci 30(29):9708–9714PubMedCrossRef
go back to reference Giovannini MG, Rakovska A, Benton RS, Pazzagli M, Bianchi L, Pepeu G (2001) Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106(1):43–53PubMedCrossRef Giovannini MG, Rakovska A, Benton RS, Pazzagli M, Bianchi L, Pepeu G (2001) Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106(1):43–53PubMedCrossRef
go back to reference Gorges M, Roselli F, Müller HP, Ludolph AC, Rasche V, Kassubek J. Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI. Front Neurol 2017 May 10;8:200. https://doi.org/10.3389/fneur.2017.00200. (eCollection 2017. Review. PubMed PMID: 28539914; PubMed Central PMCID: PMC5423907) Gorges M, Roselli F, Müller HP, Ludolph AC, Rasche V, Kassubek J. Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI. Front Neurol 2017 May 10;8:200. https://​doi.​org/​10.​3389/​fneur.​2017.​00200. (eCollection 2017. Review. PubMed PMID: 28539914; PubMed Central PMCID: PMC5423907)
go back to reference Hellige JB (1993) Hemispheric Asymmetry: What’s Right and What’s Left. Harvard University Press, Cambridge Hellige JB (1993) Hemispheric Asymmetry: What’s Right and What’s Left. Harvard University Press, Cambridge
go back to reference Hess A, Axmann R, Rech J, Finzel S, Heindl C, Kreitz S, Sergeeva M, Saake M, Garcia M, Kollias G, Straub RH, Sporns O, Doerfler A, Brune K, Schett G (2011) Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci 108(9):3731–3736PubMedPubMedCentralCrossRef Hess A, Axmann R, Rech J, Finzel S, Heindl C, Kreitz S, Sergeeva M, Saake M, Garcia M, Kollias G, Straub RH, Sporns O, Doerfler A, Brune K, Schett G (2011) Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci 108(9):3731–3736PubMedPubMedCentralCrossRef
go back to reference Honey RC, Watt A, Good M (1998) Hippocampal Lesions Disrupt an Associative Mismatch Process. J Neurosci 18(6):2226–2230PubMedCrossRef Honey RC, Watt A, Good M (1998) Hippocampal Lesions Disrupt an Associative Mismatch Process. J Neurosci 18(6):2226–2230PubMedCrossRef
go back to reference Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy J-M, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451(7176):330–334PubMedCrossRef Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy J-M, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451(7176):330–334PubMedCrossRef
go back to reference Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ (2004) Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci 4(3):317–325PubMedCrossRef Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ (2004) Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci 4(3):317–325PubMedCrossRef
go back to reference Kolb B, Sutherland RJ, Nonneman AJ, Whishaw IQ (1982) Asymmetry in the cerebral hemispheres of the rat, mouse, rabbit, and cat: the right hemisphere is larger. Exp Neurol 78(2):348–359PubMedCrossRef Kolb B, Sutherland RJ, Nonneman AJ, Whishaw IQ (1982) Asymmetry in the cerebral hemispheres of the rat, mouse, rabbit, and cat: the right hemisphere is larger. Exp Neurol 78(2):348–359PubMedCrossRef
go back to reference Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4(6):664–680PubMedCrossRef Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4(6):664–680PubMedCrossRef
go back to reference Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92(5):917–927PubMedCrossRef Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92(5):917–927PubMedCrossRef
go back to reference LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945PubMedCrossRef LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945PubMedCrossRef
go back to reference Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann N Y Acad Sci 299:264–272PubMedCrossRef Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann N Y Acad Sci 299:264–272PubMedCrossRef
go back to reference Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13(12):5418–5432PubMed Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13(12):5418–5432PubMed
go back to reference Michaelides M, Anderson SAR, Ananth M, Smirnov D, Thanos PK, Neumaier JF, Wang G-J, Volkow ND, Hurd YL (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123(12):5342–5350CrossRef Michaelides M, Anderson SAR, Ananth M, Smirnov D, Thanos PK, Neumaier JF, Wang G-J, Volkow ND, Hurd YL (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123(12):5342–5350CrossRef
go back to reference Nakamura K (1999) Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex. J Neurophysiol 82(5):2503–2517PubMedCrossRef Nakamura K (1999) Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex. J Neurophysiol 82(5):2503–2517PubMedCrossRef
go back to reference Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA et al (1987) Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28(2):191–202PubMed Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA et al (1987) Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28(2):191–202PubMed
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Cambridge Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Cambridge
go back to reference Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391PubMedCrossRef Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391PubMedCrossRef
go back to reference Rogan MT, Staubli UV, Ledoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRef Rogan MT, Staubli UV, Ledoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRef
go back to reference Savonenko AV, Danilets AV, Zielinski K (1998) [The study of individual differences as a method for dividing into stages the acquisition of a complex reflex]. Zh Vyssh Nerv Deiat Im I P Pavlova 48(2):240–250PubMed Savonenko AV, Danilets AV, Zielinski K (1998) [The study of individual differences as a method for dividing into stages the acquisition of a complex reflex]. Zh Vyssh Nerv Deiat Im I P Pavlova 48(2):240–250PubMed
go back to reference Scheich H, Brosch M (2013) Task-related activation of auditory cortex. In: Neural correlates of auditory cognition. Springer, New York, pp 45–81CrossRef Scheich H, Brosch M (2013) Task-related activation of auditory cortex. In: Neural correlates of auditory cognition. Springer, New York, pp 45–81CrossRef
go back to reference Stark H, Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68(2):691–697PubMedCrossRef Stark H, Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68(2):691–697PubMedCrossRef
go back to reference Stark H, Bischof A, Wagner T, Scheich H (2001) Activation of the dopaminergic system of medial prefrontal cortex of gerbils during formation of relevant associations for the avoidance strategy in the shuttle-box. Prog Neuropsychopharmacol Biol Psychiatry 25(2):409–426PubMedCrossRef Stark H, Bischof A, Wagner T, Scheich H (2001) Activation of the dopaminergic system of medial prefrontal cortex of gerbils during formation of relevant associations for the avoidance strategy in the shuttle-box. Prog Neuropsychopharmacol Biol Psychiatry 25(2):409–426PubMedCrossRef
go back to reference Stark H, Rothe T, Wagner T, Scheich H (2004) Learning a new behavioral strategy in the shuttle-box increases prefrontal dopamine. Neuroscience 126(1):21–29PubMedCrossRef Stark H, Rothe T, Wagner T, Scheich H (2004) Learning a new behavioral strategy in the shuttle-box increases prefrontal dopamine. Neuroscience 126(1):21–29PubMedCrossRef
go back to reference Strange BA, Fletcher PC, Henson RN, Friston KJ, Dolan RJ (1999) Segregating the functions of human hippocampus. Proc Natl Acad Sci U S A 96(7):4034–4039PubMedPubMedCentralCrossRef Strange BA, Fletcher PC, Henson RN, Friston KJ, Dolan RJ (1999) Segregating the functions of human hippocampus. Proc Natl Acad Sci U S A 96(7):4034–4039PubMedPubMedCentralCrossRef
go back to reference Sullivan RM, Gratton A (1999) Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19(7):2834–2840PubMed Sullivan RM, Gratton A (1999) Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19(7):2834–2840PubMed
go back to reference Sullivan RM, Gratton A (2002) Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res 927(1):69–79PubMedCrossRef Sullivan RM, Gratton A (2002) Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res 927(1):69–79PubMedCrossRef
go back to reference Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Brain Res Rev 43(3):231–246PubMedCrossRef Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Brain Res Rev 43(3):231–246PubMedCrossRef
go back to reference Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo M-K, Volkow ND (2013) Mapping brain metabolic connectivity in awake rats with μPET and optogenetic stimulation. J Neurosci 33(15):6343–6349 PubMedPubMedCentralCrossRef Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo M-K, Volkow ND (2013) Mapping brain metabolic connectivity in awake rats with μPET and optogenetic stimulation. J Neurosci 33(15):6343–6349 PubMedPubMedCentralCrossRef
go back to reference Thiel CM, Huston JP, Schwarting RK (1998) Hippocampal acetylcholine and habituation learning. Neuroscience 85(4):1253–1262PubMedCrossRef Thiel CM, Huston JP, Schwarting RK (1998) Hippocampal acetylcholine and habituation learning. Neuroscience 85(4):1253–1262PubMedCrossRef
go back to reference Thiel CM, Muller CP, Huston JP, Schwarting RK (1999) High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience 93(1):243–251PubMedCrossRef Thiel CM, Muller CP, Huston JP, Schwarting RK (1999) High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience 93(1):243–251PubMedCrossRef
go back to reference Vankov A, Herve-Minvielle A, Sara SJ (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci 7(6):1180–1187PubMedCrossRef Vankov A, Herve-Minvielle A, Sara SJ (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci 7(6):1180–1187PubMedCrossRef
go back to reference Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F, Furman M, de Stein ML, Medina JH, Izquierdo I (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7(5):333–340PubMedPubMedCentralCrossRef Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F, Furman M, de Stein ML, Medina JH, Izquierdo I (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7(5):333–340PubMedPubMedCentralCrossRef
go back to reference Weinberger NM, Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Prog Neurobiol 29(1):1–55PubMedCrossRef Weinberger NM, Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Prog Neurobiol 29(1):1–55PubMedCrossRef
go back to reference Wetzel W, Ohl FW, Wagner T, Scheich H (1998) Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neurosci Lett 252(2):115–118PubMedCrossRef Wetzel W, Ohl FW, Wagner T, Scheich H (1998) Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neurosci Lett 252(2):115–118PubMedCrossRef
go back to reference Zhu XO, McCabe BJ, Aggleton JP, Brown MW (1997) Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229(2):141–143PubMedCrossRef Zhu XO, McCabe BJ, Aggleton JP, Brown MW (1997) Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229(2):141–143PubMedCrossRef
Metadata
Title
Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats
Authors
A. Mannewitz
J. Bock
S. Kreitz
A. Hess
J. Goldschmidt
H. Scheich
Katharina Braun
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1605-x

Other articles of this Issue 4/2018

Brain Structure and Function 4/2018 Go to the issue