Skip to main content
Top
Published in: International Ophthalmology 6/2018

01-12-2018 | Original Paper

Comparative proteomic analysis of amnion membrane transplantation and cross-linking treatments in an experimental alkali injury model

Authors: Sevgi Subasi, Ozgul Altintas, Murat Kasap, Nil Guzel, Gurler Akpinar, Suleyman Karaman

Published in: International Ophthalmology | Issue 6/2018

Login to get access

Abstract

Purpose

In this study, by using a two-dimensional (2D) electrophoresis-based experimental approach, we aimed at understanding the nature of alkali injuries and the underlying mechanisms. A secondary aim was to compare the effects of cross-linking (CXL) and amnion membrane transplantation (AMT) on corneal protein compositions at the end of the early repair phase after injured with alkali.

Method

The right corneas of 24 rabbits were injured with a 1 N solution of NaOH. Groups were formed based on the adjuvant therapies as (1) healthy group, (2) control group, (3) CXL group, (4) AMT group. In addition to the therapies, a conventional medical treatment was applied to all groups. Left eyes were used as within-subject healthy corneas (1). The corneas were excised at day 21, and a comparative proteomic analysis was performed using 2D gel electrophoresis coupled with MALDI-TOF/TOF.

Result

2D gel electrophoresis revealed the presence seven protein spots whose abundance changed among the groups. Those proteins were SH3 domain-binding protein, plant homeodomain finger protein 23, S100 calcium binding protein A-11(S100 A11), keratin type 2 cytoskeletal 1 and 2, transketolase and glyceraldehyde 3-phosphate dehydrogenase. Ingenuity pathway analysis predicted that the observed changes may be linked to a central metabolic pathway, transforming growth factor beta 1. Canonical pathway analysis focused our attention to two different pathways, namely nicotinamide adenine dinucleotide repair pathway and non-oxidative branch of pentose phosphate pathway.

Conclusion

Our results shed some light onto the molecular mechanisms affected by alkali injury and adjuvant treatments. Further research is needed to propose medically significant target molecules that may be used for novel drug developments for alkali injury.
Literature
1.
go back to reference Wagoner MD (1997) Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 41:275–313CrossRef Wagoner MD (1997) Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 41:275–313CrossRef
2.
go back to reference Pfister RR (1983) The effects of chemical injury on the ocular surface. Ophthalmology 90(6):601–609CrossRef Pfister RR (1983) The effects of chemical injury on the ocular surface. Ophthalmology 90(6):601–609CrossRef
3.
go back to reference Micheal DW (1997) Chemical injuries of the eye: current consepts in pathophysiology and therapy. Surv Ophthalmol 41:275–307CrossRef Micheal DW (1997) Chemical injuries of the eye: current consepts in pathophysiology and therapy. Surv Ophthalmol 41:275–307CrossRef
4.
go back to reference Kheirkhah A, Johnson DA, Paranjpe DR, Raju VK, Casas V, Tseng SC (2008) Temporary sutureless amniotic membrane patch for acute alkaline burns. Arch Ophthalmol 126:1059–1066CrossRef Kheirkhah A, Johnson DA, Paranjpe DR, Raju VK, Casas V, Tseng SC (2008) Temporary sutureless amniotic membrane patch for acute alkaline burns. Arch Ophthalmol 126:1059–1066CrossRef
5.
go back to reference Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335CrossRef Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335CrossRef
6.
go back to reference Lee SB, Li DQ, Tan DT, Meller DC, Tseng SC (2000) Suppression of TGF-ß signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334CrossRef Lee SB, Li DQ, Tan DT, Meller DC, Tseng SC (2000) Suppression of TGF-ß signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334CrossRef
7.
go back to reference Joseph A, Dua HS, King AJ (2001) Failure of amniotic membrane transplantation in the treatment of acute ocular burns. Br J Ophthalmol 85:1065–1069CrossRef Joseph A, Dua HS, King AJ (2001) Failure of amniotic membrane transplantation in the treatment of acute ocular burns. Br J Ophthalmol 85:1065–1069CrossRef
8.
go back to reference Panda A, Nainiwal SK, Sudan R (2002) Failure of amniotic membrane transplantation in the treatment of acute ocular burns. Br J Ophthalmol 86:831CrossRef Panda A, Nainiwal SK, Sudan R (2002) Failure of amniotic membrane transplantation in the treatment of acute ocular burns. Br J Ophthalmol 86:831CrossRef
9.
go back to reference Subasi S, Altintas O, Yardimoglu M, Yazir Y, Karaman S, Rencber SF et al (2017) Comparison of collagen cross-linking and amniotic membrane transplantation in an experimental alkali burn rabbit model. Cornea 36:1106–1115CrossRef Subasi S, Altintas O, Yardimoglu M, Yazir Y, Karaman S, Rencber SF et al (2017) Comparison of collagen cross-linking and amniotic membrane transplantation in an experimental alkali burn rabbit model. Cornea 36:1106–1115CrossRef
10.
go back to reference Ramona BI, Catalina C, Andrei M, Daciana S, Calin T (2016) Collagen crosslinking in the management of microbial keratitis. Rom J Ophthalmol 60:28–30PubMedPubMedCentral Ramona BI, Catalina C, Andrei M, Daciana S, Calin T (2016) Collagen crosslinking in the management of microbial keratitis. Rom J Ophthalmol 60:28–30PubMedPubMedCentral
11.
go back to reference Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH et al (2005) Changes in collagen orientantion and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 46:1948–1956CrossRef Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH et al (2005) Changes in collagen orientantion and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 46:1948–1956CrossRef
12.
go back to reference Schnitzler E, Spörl E, Seiler T (2000) Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin Monbl Augenheilkd 217:190–193CrossRef Schnitzler E, Spörl E, Seiler T (2000) Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin Monbl Augenheilkd 217:190–193CrossRef
13.
go back to reference Spoerl E, Wollensak G, Seiler T (2004) Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res 9:35–40CrossRef Spoerl E, Wollensak G, Seiler T (2004) Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res 9:35–40CrossRef
14.
go back to reference Gao XW, Zhao XD, Li WJ, Zhou X, Liu Y (2012) Experimental study on the treatment of rabbit corneal melting after alkali burn with collagen cross-linking. Int J Ophthalmol 5:147–150PubMedPubMedCentral Gao XW, Zhao XD, Li WJ, Zhou X, Liu Y (2012) Experimental study on the treatment of rabbit corneal melting after alkali burn with collagen cross-linking. Int J Ophthalmol 5:147–150PubMedPubMedCentral
15.
go back to reference Colombo-Barboza M, Colombo-Barboza G, Felberg S, Dantas PE, Sato EH (2014) Induction of corneal collagen cross-linking in experimental corneal alkali burns in rabbits. Arq Bras Oftalmol 77:310–314CrossRef Colombo-Barboza M, Colombo-Barboza G, Felberg S, Dantas PE, Sato EH (2014) Induction of corneal collagen cross-linking in experimental corneal alkali burns in rabbits. Arq Bras Oftalmol 77:310–314CrossRef
16.
go back to reference Kumar GK (1985) Klein JB (2004) Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol 96:1178–1186CrossRef Kumar GK (1985) Klein JB (2004) Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol 96:1178–1186CrossRef
17.
go back to reference Chaurand P, Schwartz SA, Caprioli RM (2004) Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res 3:245–252CrossRef Chaurand P, Schwartz SA, Caprioli RM (2004) Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res 3:245–252CrossRef
18.
go back to reference Dyrlund TF, Poulsen ET, Scavenius C, Nikolajsen CL, Thøgersen IB, Vorum H et al (2012) Human cornea proteome: identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J Proteome Res 11:4231–4239CrossRef Dyrlund TF, Poulsen ET, Scavenius C, Nikolajsen CL, Thøgersen IB, Vorum H et al (2012) Human cornea proteome: identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J Proteome Res 11:4231–4239CrossRef
19.
go back to reference Karring H, Thogersen IB, Klintworth GK, Moller-Pederson T, Enghild JJ (2005) A dataset of human cornea proteins identified by peptide mass fingerprinting and tandem mass spectrometry. Mol Cell Proteom 4:1406–1408CrossRef Karring H, Thogersen IB, Klintworth GK, Moller-Pederson T, Enghild JJ (2005) A dataset of human cornea proteins identified by peptide mass fingerprinting and tandem mass spectrometry. Mol Cell Proteom 4:1406–1408CrossRef
20.
go back to reference Ormerod LD, Abelson MB, Kenyon KR (1989) Standard models of corneal injury using alkali-immersed filter discs. Invest Ophthalmol Vis Sci 30:2148–2153PubMed Ormerod LD, Abelson MB, Kenyon KR (1989) Standard models of corneal injury using alkali-immersed filter discs. Invest Ophthalmol Vis Sci 30:2148–2153PubMed
21.
go back to reference Li Zhao-Na, Yuan Zhong-Fang, Guo-Ying Mu, Ming Hu, Cao Li-Jun, Zhang Ya-Li et al (2015) Inhibitory effect of polysulfated heparin endostatin on alkali burn induced corneal neovascularization in rabbit. Int J Ophthalmol 8:234–238PubMedPubMedCentral Li Zhao-Na, Yuan Zhong-Fang, Guo-Ying Mu, Ming Hu, Cao Li-Jun, Zhang Ya-Li et al (2015) Inhibitory effect of polysulfated heparin endostatin on alkali burn induced corneal neovascularization in rabbit. Int J Ophthalmol 8:234–238PubMedPubMedCentral
22.
go back to reference Roper-Hall MJ (1965) Thermal and chemical burns. Trans Ophthalmol Soc U K 85:631–653PubMed Roper-Hall MJ (1965) Thermal and chemical burns. Trans Ophthalmol Soc U K 85:631–653PubMed
23.
go back to reference Micheal DW (1997) Chemical injuries of the eye: current consepts in pathophysiology and therapy. Surv Ophthalmol 41:275–307CrossRef Micheal DW (1997) Chemical injuries of the eye: current consepts in pathophysiology and therapy. Surv Ophthalmol 41:275–307CrossRef
24.
go back to reference Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T (2007) Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26:385–389CrossRef Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T (2007) Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26:385–389CrossRef
25.
go back to reference Prabhasawat P, Kostirukvongs P, Booranapong W, Vajaradul Y (2000) Application of preserved human amniotic membrane for corneal surface reconstruction. Cell Tissue Bank 1:213–222CrossRef Prabhasawat P, Kostirukvongs P, Booranapong W, Vajaradul Y (2000) Application of preserved human amniotic membrane for corneal surface reconstruction. Cell Tissue Bank 1:213–222CrossRef
26.
go back to reference Letko E, Stechschulte SU, Kenyon KR, Sadeq N, Romero TR, Samson CM et al (2001) Amniotic membrane inlay and overlay grafting for corneal epithelial defects and stromal ulcers. Arch Ophthalmol 119:659–663CrossRef Letko E, Stechschulte SU, Kenyon KR, Sadeq N, Romero TR, Samson CM et al (2001) Amniotic membrane inlay and overlay grafting for corneal epithelial defects and stromal ulcers. Arch Ophthalmol 119:659–663CrossRef
27.
go back to reference Hayashida-Hibino S, Watanabe H, Nishida K, Tsujikawa M, Tanaka T, Hori Y et al (2001) The effect of TGF-beta1 on differential gene expression profiles in human corneal epithelium studied by cDNA expression array. Invest Ophthalmol Vis Sci 42:1691–1697PubMed Hayashida-Hibino S, Watanabe H, Nishida K, Tsujikawa M, Tanaka T, Hori Y et al (2001) The effect of TGF-beta1 on differential gene expression profiles in human corneal epithelium studied by cDNA expression array. Invest Ophthalmol Vis Sci 42:1691–1697PubMed
28.
go back to reference Mishima H, Nakamura M, Murakami J, Nishida T, Otori T (1992) Transforming growth factor-b modulates effects of epidermal growth factor on corneal epithelial cells. Curr Eye Res 11:691–696CrossRef Mishima H, Nakamura M, Murakami J, Nishida T, Otori T (1992) Transforming growth factor-b modulates effects of epidermal growth factor on corneal epithelial cells. Curr Eye Res 11:691–696CrossRef
29.
go back to reference Moustakas A, Souchelnytskyi S, Heldin C-H (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369PubMed Moustakas A, Souchelnytskyi S, Heldin C-H (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369PubMed
30.
go back to reference Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647CrossRef Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647CrossRef
31.
go back to reference Wang Z, Hu J, Li G, Qu L, He Q, Lou Y et al (2014) PHF23 (plant homeodomain finger protein 23) negatively regulates cell autophagy by promoting ubiquitination and degradation of E3 ligase LRSAM1. Autophagy 10:2158–2170CrossRef Wang Z, Hu J, Li G, Qu L, He Q, Lou Y et al (2014) PHF23 (plant homeodomain finger protein 23) negatively regulates cell autophagy by promoting ubiquitination and degradation of E3 ligase LRSAM1. Autophagy 10:2158–2170CrossRef
32.
go back to reference Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296CrossRef Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296CrossRef
33.
go back to reference Stramer BM, Cook JR, Fini ME, Taylor A, Obin M (2001) Induction of the ubiquitin-proteasome pathway during the keratocyte transition to the repair fibroblast phenotype. Invest Ophthalmol Vis Sci 42:1698–1706PubMed Stramer BM, Cook JR, Fini ME, Taylor A, Obin M (2001) Induction of the ubiquitin-proteasome pathway during the keratocyte transition to the repair fibroblast phenotype. Invest Ophthalmol Vis Sci 42:1698–1706PubMed
34.
go back to reference Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD et al (1999) The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci 112:613–622PubMed Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD et al (1999) The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci 112:613–622PubMed
35.
go back to reference Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479CrossRef Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479CrossRef
36.
go back to reference Wilkinson KD (1999) Ubiquitin-dependent signaling: the role of ubiquitination in the response of cells to their environment. J Nutr 129:1933–1936CrossRef Wilkinson KD (1999) Ubiquitin-dependent signaling: the role of ubiquitination in the response of cells to their environment. J Nutr 129:1933–1936CrossRef
37.
go back to reference Sax CM, Salamon C, Kays WT, Guo J, Yu FX, Cuthbertson RA et al (1996) Transketolase is a major protein in the mouse cornea. J Biol Chem 271:33568–33574CrossRef Sax CM, Salamon C, Kays WT, Guo J, Yu FX, Cuthbertson RA et al (1996) Transketolase is a major protein in the mouse cornea. J Biol Chem 271:33568–33574CrossRef
38.
go back to reference Geroski DH, Edelhauser HF, O’Brien WJ (1978) Hexose-monophosphate shunt response to diamide in the component layers of the cornea. Exp Eye Res 26:611–619CrossRef Geroski DH, Edelhauser HF, O’Brien WJ (1978) Hexose-monophosphate shunt response to diamide in the component layers of the cornea. Exp Eye Res 26:611–619CrossRef
39.
go back to reference Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:1356–1368 Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:1356–1368
40.
go back to reference Tong L, Corrales RM, Chen Z, Villarreal AL, De Paiva CS, Beuerman R et al (2006) Expression and regulation of cornified envelope proteins in human corneal epithelium. Invest Ophthalmol Vis Sci 47:1938–1946CrossRef Tong L, Corrales RM, Chen Z, Villarreal AL, De Paiva CS, Beuerman R et al (2006) Expression and regulation of cornified envelope proteins in human corneal epithelium. Invest Ophthalmol Vis Sci 47:1938–1946CrossRef
41.
go back to reference Zhao L, Wang H, Liu C, Liu Y, Wang X, Wang S et al (2010) Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1. Gut 59:1226–1235CrossRef Zhao L, Wang H, Liu C, Liu Y, Wang X, Wang S et al (2010) Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1. Gut 59:1226–1235CrossRef
42.
go back to reference McLean WH, Moore CB (2011) Keratin disorders: from gene to therapy. Hum Mol Genet 20:89–97CrossRef McLean WH, Moore CB (2011) Keratin disorders: from gene to therapy. Hum Mol Genet 20:89–97CrossRef
43.
go back to reference Irvine AD, Corden LD, Swensson O, Swensson B, Moore JE, Frazer DG (1997) Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann’s corneal dystrophy. Nat Genet 16:184–187CrossRef Irvine AD, Corden LD, Swensson O, Swensson B, Moore JE, Frazer DG (1997) Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann’s corneal dystrophy. Nat Genet 16:184–187CrossRef
44.
go back to reference Srivastava OP, Chandrasekaran D, Pfister RR (2006) Molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Mol Vis 12:1615–1625PubMed Srivastava OP, Chandrasekaran D, Pfister RR (2006) Molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Mol Vis 12:1615–1625PubMed
Metadata
Title
Comparative proteomic analysis of amnion membrane transplantation and cross-linking treatments in an experimental alkali injury model
Authors
Sevgi Subasi
Ozgul Altintas
Murat Kasap
Nil Guzel
Gurler Akpinar
Suleyman Karaman
Publication date
01-12-2018
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 6/2018
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-017-0770-5

Other articles of this Issue 6/2018

International Ophthalmology 6/2018 Go to the issue