Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 8/2017

01-08-2017 | Knee

Comparative assessment of different reconstructive techniques of distal femur in revision total knee arthroplasty

Authors: A. Completo, F. Fonseca, A. Ramos, J. Simões

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 8/2017

Login to get access

Abstract

Purpose

Bone loss is often encountered in revision total knee arthroplasty. In particular, when the cortex of distal femur is breached, the surgical decision on the reconstructive options to be taken is challenging due to the variety of defects and the lack of data from clinical or experimental studies that can support it. The aim of the present work was to test the hypothesis that for an identical defect and bone condition, each reconstructive technique option has a dissimilar stress and stability behaviour, which may be related to differing longevity of the revision procedure.

Methods

Triaxial strain gauges and video extensometer were used to measure distal cortex strains and implant stability in eight reconstructive techniques replicated with synthetic femur under a load of 2030N. To assess the cancellous bone strains, finite element models were developed and validated.

Results

The measured strains showed that the distal cortex is not immune to the different reconstructive techniques, when applied to an identical defect; however, significant differences (P < 0.05) were found only between bone graft and metal augment on the 12-mm larger distal defect. The stem addition improves the stability of all reconstructive techniques; however, significant differences (P = 0.03) were found only on the bone-graft technique.

Conclusions

Cement-fill and metal-augment techniques, applied to the 4-mm smaller defect, are not associated with different structural behaviour, while for the 12-mm larger defect, the metal-augment and bone-graft techniques presented distinct biomechanical effects. These effects, by themselves, may not be sufficient to be associated with a different longevity of the revision procedure among techniques, when the stem is added to the bone-graft technique. These findings, based on independent scientific understanding and advanced prediction tools, can improve the surgical decision-making process, when the peripheral cortex of the distal femur is breached.
Literature
1.
go back to reference Backstein D, Safir O, Gross A (2006) Management of bone loss: structural grafts in revision total knee arthroplasty. Clin Orthop Relat Res 446:104–112CrossRefPubMed Backstein D, Safir O, Gross A (2006) Management of bone loss: structural grafts in revision total knee arthroplasty. Clin Orthop Relat Res 446:104–112CrossRefPubMed
2.
go back to reference Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ (2010) The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 468:45–51CrossRefPubMed Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ (2010) The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 468:45–51CrossRefPubMed
3.
go back to reference Chen AF, Choi LE, Colman MW, Goodman MA, Crossett LS, Tarkin IS, McGough RL (2013) Primary versus secondary distal femoral arthroplasty for treatment of total knee arthroplasty periprosthetic femur fractures. J Arthroplasty 28:1580–1584CrossRefPubMed Chen AF, Choi LE, Colman MW, Goodman MA, Crossett LS, Tarkin IS, McGough RL (2013) Primary versus secondary distal femoral arthroplasty for treatment of total knee arthroplasty periprosthetic femur fractures. J Arthroplasty 28:1580–1584CrossRefPubMed
4.
go back to reference Choi K, Goldstein SA (1992) A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J Biomech 25:1371–1381CrossRefPubMed Choi K, Goldstein SA (1992) A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J Biomech 25:1371–1381CrossRefPubMed
5.
go back to reference Cipolletti GB, Cook FW (1978) Fatigue of bone cement in physiological saline at one Hz. In: Transactions of the 4th annual society for biomaterials, 10th international biomaterials symposium. San Antonio, pp 134–135 Cipolletti GB, Cook FW (1978) Fatigue of bone cement in physiological saline at one Hz. In: Transactions of the 4th annual society for biomaterials, 10th international biomaterials symposium. San Antonio, pp 134–135
6.
go back to reference Completo A, Fonseca F, Simões J, Ramos A, Relvas C (2012) A new press-fit stem concept to reduce the risk of end-of-stem pain at revision TKA: a pre-clinical study. Knee 19:537–542CrossRefPubMed Completo A, Fonseca F, Simões J, Ramos A, Relvas C (2012) A new press-fit stem concept to reduce the risk of end-of-stem pain at revision TKA: a pre-clinical study. Knee 19:537–542CrossRefPubMed
7.
go back to reference Completo A, Duarte R, Fonseca F, Simões JA, Ramos A, Relvas C (2013) Biomechanical evaluation of different reconstructive techniques of proximal tibia in revision total knee arthroplasty: an in vitro and finite element analysis. Clin Biomech 28:291–298CrossRef Completo A, Duarte R, Fonseca F, Simões JA, Ramos A, Relvas C (2013) Biomechanical evaluation of different reconstructive techniques of proximal tibia in revision total knee arthroplasty: an in vitro and finite element analysis. Clin Biomech 28:291–298CrossRef
8.
go back to reference Completo A, Simões J, Fonseca F (2009) Revision total knee arthroplasty: the influence of femoral stems in load sharing and stability. Knee 16:275–279CrossRefPubMed Completo A, Simões J, Fonseca F (2009) Revision total knee arthroplasty: the influence of femoral stems in load sharing and stability. Knee 16:275–279CrossRefPubMed
9.
go back to reference Completo A, Fonseca F, Relvas C, Ramos A, Simões J (2011) Improved Stability with intramedullary stem after anterior femoral notching in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20:487–494CrossRefPubMed Completo A, Fonseca F, Relvas C, Ramos A, Simões J (2011) Improved Stability with intramedullary stem after anterior femoral notching in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20:487–494CrossRefPubMed
10.
go back to reference Completo A, Rego A, Fonseca F, Ramos A, Relvas C, Simões JA (2010) Biomechanical evaluation of proximal tibia behaviour with the use of femoral stems in revision TKA: an in vitro and finite element analysis. Clin Biomech 25:159–165CrossRef Completo A, Rego A, Fonseca F, Ramos A, Relvas C, Simões JA (2010) Biomechanical evaluation of proximal tibia behaviour with the use of femoral stems in revision TKA: an in vitro and finite element analysis. Clin Biomech 25:159–165CrossRef
11.
go back to reference Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: What they can offer and what they cannot. J Bone Joint Surg Br 89:574–580CrossRefPubMed Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: What they can offer and what they cannot. J Bone Joint Surg Br 89:574–580CrossRefPubMed
12.
go back to reference Dennis DA (1998) Repairing minor bone defects: augmentation and autograft. Orthopedics 21:1036–1038PubMed Dennis DA (1998) Repairing minor bone defects: augmentation and autograft. Orthopedics 21:1036–1038PubMed
13.
go back to reference Engh GA, Herzwurm PJ, Parks NL (1997) Treatment of major defects of bone with bulk allografts and stemmed components during total knee arthroplasty. J Bone Joint Surg Am 79:1030–1039CrossRefPubMed Engh GA, Herzwurm PJ, Parks NL (1997) Treatment of major defects of bone with bulk allografts and stemmed components during total knee arthroplasty. J Bone Joint Surg Am 79:1030–1039CrossRefPubMed
14.
go back to reference Engh GA, Ammeen DJ (2007) Use of structural allograft in revision total knee arthroplasty in knees with severe tibial bone loss. J Bone Joint Surg Am 89:2640–2647CrossRefPubMed Engh GA, Ammeen DJ (2007) Use of structural allograft in revision total knee arthroplasty in knees with severe tibial bone loss. J Bone Joint Surg Am 89:2640–2647CrossRefPubMed
15.
go back to reference Franke KF, Nusem I, Gamboa G, Morgan DA (2013) Outcome of revision total knee arthroplasty with bone allograft in 30 cases. Acta Orthop Belg 79:427–434PubMed Franke KF, Nusem I, Gamboa G, Morgan DA (2013) Outcome of revision total knee arthroplasty with bone allograft in 30 cases. Acta Orthop Belg 79:427–434PubMed
16.
go back to reference Frost HM (2003) Bone’s Mechanostat: a 2003 update. Anat Rec A 275:1081–1101CrossRef Frost HM (2003) Bone’s Mechanostat: a 2003 update. Anat Rec A 275:1081–1101CrossRef
17.
go back to reference Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38:613–620CrossRefPubMed Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38:613–620CrossRefPubMed
18.
go back to reference Ghazavi M, Stockley I, Yee G, Davis A, Gross AE (1997) Reconstruction of massive bone defects with allograft in revision total knee arthroplasty. J Bone Joint Surg Am 79(17):25 Ghazavi M, Stockley I, Yee G, Davis A, Gross AE (1997) Reconstruction of massive bone defects with allograft in revision total knee arthroplasty. J Bone Joint Surg Am 79(17):25
19.
go back to reference Gross TS, Rubin CT (1995) Uniformity of resorptive bone loss induced by disuse. J Orthop Res 13:708–714CrossRefPubMed Gross TS, Rubin CT (1995) Uniformity of resorptive bone loss induced by disuse. J Orthop Res 13:708–714CrossRefPubMed
20.
go back to reference Hanna SA, Aston WJ, de Roeck NJ, Gough-Palmer A, Powles DP (2011) Cementless revision TKA with bone grafting of osseous defects restores bone stock with a low revision rate at 4 to 10 years. Clin Orthop Relat Res 469:3164–3171CrossRefPubMedPubMedCentral Hanna SA, Aston WJ, de Roeck NJ, Gough-Palmer A, Powles DP (2011) Cementless revision TKA with bone grafting of osseous defects restores bone stock with a low revision rate at 4 to 10 years. Clin Orthop Relat Res 469:3164–3171CrossRefPubMedPubMedCentral
21.
go back to reference Heiner A (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41:3282–3284CrossRefPubMed Heiner A (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41:3282–3284CrossRefPubMed
22.
go back to reference Hockman DE, Ammeen D, Engh GA (2005) Augments and allografts in revision total knee arthroplasty: usage and outcome using one modular revision prosthesis. J Arthroplasty 20:35–41CrossRefPubMed Hockman DE, Ammeen D, Engh GA (2005) Augments and allografts in revision total knee arthroplasty: usage and outcome using one modular revision prosthesis. J Arthroplasty 20:35–41CrossRefPubMed
23.
go back to reference Huiskes R (1993) Mechanical failure in total hip arthroplasty with cement. Curr Orthop 7(239):247 Huiskes R (1993) Mechanical failure in total hip arthroplasty with cement. Curr Orthop 7(239):247
24.
go back to reference Huten D (2013) Femorotibial bone loss during revision total knee arthroplasty. Orthop Traumatol Surg Res 99:22–33CrossRef Huten D (2013) Femorotibial bone loss during revision total knee arthroplasty. Orthop Traumatol Surg Res 99:22–33CrossRef
25.
go back to reference Iosifidis M, Iliopoulos E, Neofytou D, Sakorafas N, Andreou D, Alvanos D, Kyriakidis A (2014) The Rotaglide mobile-bearing total knee arthroplasty: no difference between cemented and hybrid implantation. Knee Surg Sports Traumatol Arthrosc 22:1843–1848CrossRefPubMed Iosifidis M, Iliopoulos E, Neofytou D, Sakorafas N, Andreou D, Alvanos D, Kyriakidis A (2014) The Rotaglide mobile-bearing total knee arthroplasty: no difference between cemented and hybrid implantation. Knee Surg Sports Traumatol Arthrosc 22:1843–1848CrossRefPubMed
26.
go back to reference Lim LA, Trousdale RT, Berry DJ, Hanssen AD (2011) Failure of the stem-condyle junction of a modular femoral stem in revision total knee arthroplasty: a report of five cases. J Arthroplasty 16:128–132CrossRef Lim LA, Trousdale RT, Berry DJ, Hanssen AD (2011) Failure of the stem-condyle junction of a modular femoral stem in revision total knee arthroplasty: a report of five cases. J Arthroplasty 16:128–132CrossRef
27.
go back to reference Loughead JM, Malhan K, Mitchell SY, Pinder IM, McCaskie AW, Deehan DJ, Lingard EA (2008) Outcome following knee arthroplasty beyond 15 years. Knee 15:85–90CrossRefPubMed Loughead JM, Malhan K, Mitchell SY, Pinder IM, McCaskie AW, Deehan DJ, Lingard EA (2008) Outcome following knee arthroplasty beyond 15 years. Knee 15:85–90CrossRefPubMed
28.
go back to reference Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61CrossRefPubMed Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61CrossRefPubMed
29.
go back to reference Nazarian DG, Mehta S, Booth RE Jr (2002) A comparison of stemmed and unstemmed components in revision knee arthroplasty. Clin Orthop Relat Res 404:256–262CrossRef Nazarian DG, Mehta S, Booth RE Jr (2002) A comparison of stemmed and unstemmed components in revision knee arthroplasty. Clin Orthop Relat Res 404:256–262CrossRef
30.
31.
go back to reference Rand JA (1998) Modular augments in revision total knee arthroplasty. Orthop Clin North Am 29:347–353CrossRefPubMed Rand JA (1998) Modular augments in revision total knee arthroplasty. Orthop Clin North Am 29:347–353CrossRefPubMed
32.
go back to reference Richards CJ, Garbuz DS, Pugh L, Masri BA (2011) Revision total knee arthroplasty: clinical outcome comparison with and without the use of femoral head structural allograft. J Arthroplasty 26:1299–1304CrossRefPubMed Richards CJ, Garbuz DS, Pugh L, Masri BA (2011) Revision total knee arthroplasty: clinical outcome comparison with and without the use of femoral head structural allograft. J Arthroplasty 26:1299–1304CrossRefPubMed
33.
go back to reference Saha S, Pal S (1984) Mechanical properties of bone cement: a review. J Biomed Mater Res 18:435–462CrossRefPubMed Saha S, Pal S (1984) Mechanical properties of bone cement: a review. J Biomed Mater Res 18:435–462CrossRefPubMed
34.
go back to reference Sheng PY, Konttinen L, Lehto M, Ogino D, Jamsen E, Nevalainen J, Pajamaki J, Halonen P, Konttinen YT (2006) Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish arthroplasty registry. J Bone Joint Surg Am 88:1425–1430PubMed Sheng PY, Konttinen L, Lehto M, Ogino D, Jamsen E, Nevalainen J, Pajamaki J, Halonen P, Konttinen YT (2006) Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish arthroplasty registry. J Bone Joint Surg Am 88:1425–1430PubMed
35.
go back to reference Taylor M, Tanner KE (1997) Fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J-Bone-Joint-Surg Br 79:181–182CrossRefPubMed Taylor M, Tanner KE (1997) Fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J-Bone-Joint-Surg Br 79:181–182CrossRefPubMed
36.
go back to reference Whittaker JP, Dharmarajan R, Toms AD (2008) The management of bone loss in revision total knee replacement. J Bone Joint Surg Br 90:981–987CrossRefPubMed Whittaker JP, Dharmarajan R, Toms AD (2008) The management of bone loss in revision total knee replacement. J Bone Joint Surg Br 90:981–987CrossRefPubMed
37.
go back to reference Zhang Y, Ahn P, Fitzpatrick D, Heiner A, Poggie R, Brown T (1999) Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskelet Res 3:245–251CrossRef Zhang Y, Ahn P, Fitzpatrick D, Heiner A, Poggie R, Brown T (1999) Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial. J Musculoskelet Res 3:245–251CrossRef
Metadata
Title
Comparative assessment of different reconstructive techniques of distal femur in revision total knee arthroplasty
Authors
A. Completo
F. Fonseca
A. Ramos
J. Simões
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 8/2017
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-015-3652-2

Other articles of this Issue 8/2017

Knee Surgery, Sports Traumatology, Arthroscopy 8/2017 Go to the issue