Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 12/2008

01-12-2008 | Knee

Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: an electron, microscopic and morphologic study

Authors: Panayiotis T. Hadjicostas, Panayotis N. Soucacos, Nadezda Koleganova, Gerhard Krohmer, Irina Berger

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 12/2008

Login to get access

Abstract

Ligaments and tendons are similar in composition but differ in proportion and arrangement. Tendons are being used as grafts for the ACL reconstruction. Their microscopic structure has not been sufficiently studied and compared to the native ACL. A null hypothesis was declared stating that the anterior cruciate ligament should be histological, morphologically and functionally different from the tendon grafts used for ACL reconstruction. We investigated similarities and differences of the structure of ACL and tendons used as a graft tissue for ACL reconstruction. In this study, standardized samples of quadriceps, hamstrings (semitendinosus and gracilis) and patellar tendons, and the ACL were harvested from 26 autopsies (average age 36.4) and were investigated using light and electron microscopy, immunohistochemistry and morphometry. The thickness of the collagen fibrils, collagen organization and diameter, the fibril/interstitium ratio, density of fibroblasts and blood vessels, and distribution of the collagen type I, III and V fibrils were analyzed. The semitendinosus showed the highest density of fibroblasts and blood vessels, while the gracilis the highest fibril/interstitium ratio. No differences regarding the thickness of collagen fibrils and distribution of fibrils were found. The ACL had the highest concentration of type III and V collagen fibrils as well as elastic fibers. The histological and ultrastructural appearance of the ACL differs from those of the tendons used as graft, for ACL reconstruction. Its ultrastructure is varied and complex, with its collagen fibers bundles lying in many directions.
Literature
1.
go back to reference Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. J Bone Joint Surg Am 62:259–270PubMed Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. J Bone Joint Surg Am 62:259–270PubMed
2.
go back to reference Chandhari Am, Briant PL, Berill SL, Koo S, Adriachhi TP (2008) Knee kinetics, cartilage morphology and osteoarthritis after ACL injury. Med Sci Sports Exerc 40:215–222 Chandhari Am, Briant PL, Berill SL, Koo S, Adriachhi TP (2008) Knee kinetics, cartilage morphology and osteoarthritis after ACL injury. Med Sci Sports Exerc 40:215–222
3.
go back to reference Chandrashekar N, Mansouri H, Slanterbeck J, Hashemi J (2006) Sex-based differences in the tensile properties of human anterior cruciate ligament. J Biomech 39:2943–2950PubMedCrossRef Chandrashekar N, Mansouri H, Slanterbeck J, Hashemi J (2006) Sex-based differences in the tensile properties of human anterior cruciate ligament. J Biomech 39:2943–2950PubMedCrossRef
4.
go back to reference Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineering scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532PubMedCrossRef Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineering scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532PubMedCrossRef
5.
go back to reference Derwin KA, Soslowsky LJ, Kimura JH, Plaas AH (2001) Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle. J Orthop Res 19:269–277PubMedCrossRef Derwin KA, Soslowsky LJ, Kimura JH, Plaas AH (2001) Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle. J Orthop Res 19:269–277PubMedCrossRef
6.
go back to reference Derwin KA, Soslowsky LJ (1999) A quantitative investigation of structure-function relationships in a tendon fascicle model. J Biomech Eng 121:598–604PubMedCrossRef Derwin KA, Soslowsky LJ (1999) A quantitative investigation of structure-function relationships in a tendon fascicle model. J Biomech Eng 121:598–604PubMedCrossRef
7.
go back to reference Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ (2003) Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail animals. Ann Biomed Eng 31:599–605PubMedCrossRef Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ (2003) Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail animals. Ann Biomed Eng 31:599–605PubMedCrossRef
8.
go back to reference Ferretti A, Conteduca F, Morelli F, Masi V (2002) Regeneration of the semitendinosus tendon after its use in anterior cruciate ligament reconstruction: a histologic study of three cases. Am J Sports M 30:204–207 Ferretti A, Conteduca F, Morelli F, Masi V (2002) Regeneration of the semitendinosus tendon after its use in anterior cruciate ligament reconstruction: a histologic study of three cases. Am J Sports M 30:204–207
9.
go back to reference Hadley-Miller N, Mims B, Milewicz DM (1994) The potential role of the elastic fiber system in adolescence idiopathic scoliosis. J Bone Joint Surg Am 76:1193–1206PubMed Hadley-Miller N, Mims B, Milewicz DM (1994) The potential role of the elastic fiber system in adolescence idiopathic scoliosis. J Bone Joint Surg Am 76:1193–1206PubMed
10.
go back to reference Hashemi J, Chandrashekar N, Hossein M, Slauterbeck JR, Hardy DM (2008) The human anterior cruciate ligament. Sex differences in ultrastructure and correlation with biomechanical properties. J Orthop Res 26:945–950PubMedCrossRef Hashemi J, Chandrashekar N, Hossein M, Slauterbeck JR, Hardy DM (2008) The human anterior cruciate ligament. Sex differences in ultrastructure and correlation with biomechanical properties. J Orthop Res 26:945–950PubMedCrossRef
11.
go back to reference Hollister DW, Godfrey M, Sakai LY, Pyeritz RE (1990) Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N Engl J Med 323:152–159PubMed Hollister DW, Godfrey M, Sakai LY, Pyeritz RE (1990) Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N Engl J Med 323:152–159PubMed
12.
go back to reference Josza LG, Kannus P (eds) (1997) Human tendons: anatomy physiology and pathology. Campaign, IL, Human Kinetics, pp 46–95 Josza LG, Kannus P (eds) (1997) Human tendons: anatomy physiology and pathology. Campaign, IL, Human Kinetics, pp 46–95
13.
go back to reference Kannus P (2000) Structure of tendon connective tissue. Scand J Med Sci 10:312–320CrossRef Kannus P (2000) Structure of tendon connective tissue. Scand J Med Sci 10:312–320CrossRef
14.
go back to reference Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 27:139–144PubMedCrossRef Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 27:139–144PubMedCrossRef
15.
go back to reference LaPrade RF, Hamilton CD, Montgomery RD, Wentorf F, Hawkins HD (1997) The reharvested central third of the patellar tendon. A histological and biomechanical analysis. Am J Sport M 25:779–785CrossRef LaPrade RF, Hamilton CD, Montgomery RD, Wentorf F, Hawkins HD (1997) The reharvested central third of the patellar tendon. A histological and biomechanical analysis. Am J Sport M 25:779–785CrossRef
16.
go back to reference Lavignino M, Arnoczky SP, Frank K, Tian T (2005) Collagen fibril diameter distribution dose not reflect changes in the mechanical properties of in vitro stress-deprived tendons. J Biomech 38:69–75 Lavignino M, Arnoczky SP, Frank K, Tian T (2005) Collagen fibril diameter distribution dose not reflect changes in the mechanical properties of in vitro stress-deprived tendons. J Biomech 38:69–75
17.
go back to reference Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee: The contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58:583–593PubMed Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee: The contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58:583–593PubMed
18.
go back to reference Noyes FR, Butler SD, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352PubMed Noyes FR, Butler SD, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352PubMed
19.
go back to reference Oakes BW (1993) Collagen ultrastructure in the normal ACL and in ACL graft. In: Jackson DW (ed) The anterior cruciate ligament: current and future concepts. Raven Press Ltd, New York, pp 209–217 Oakes BW (1993) Collagen ultrastructure in the normal ACL and in ACL graft. In: Jackson DW (ed) The anterior cruciate ligament: current and future concepts. Raven Press Ltd, New York, pp 209–217
20.
go back to reference Parry DA (1988) The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 27:195–209CrossRef Parry DA (1988) The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 27:195–209CrossRef
21.
go back to reference Parry DA, Barnes GRG, Craig AS (1978) Comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proceedings of the Royal Society of London, Series B. Biol Sci 203:305–321CrossRef Parry DA, Barnes GRG, Craig AS (1978) Comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proceedings of the Royal Society of London, Series B. Biol Sci 203:305–321CrossRef
22.
go back to reference Provenzano PP, Vanderby R Jr (2006) Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25:71–84PubMedCrossRef Provenzano PP, Vanderby R Jr (2006) Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25:71–84PubMedCrossRef
23.
go back to reference Pufe T, Petersen WJ, Menttlen R, Tillman BN (2005) The role of vasculature and angiogenesis for the pathogenesis of degenerative tendons disease. Scan J Med Sci Sports 15:211–222CrossRef Pufe T, Petersen WJ, Menttlen R, Tillman BN (2005) The role of vasculature and angiogenesis for the pathogenesis of degenerative tendons disease. Scan J Med Sci Sports 15:211–222CrossRef
24.
go back to reference Rowden NJ, Sher D, Rogers GJ, Schindhelm K (1997) Anterior cruciate ligament fixation: Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers. Am J Sports M 25:472–478CrossRef Rowden NJ, Sher D, Rogers GJ, Schindhelm K (1997) Anterior cruciate ligament fixation: Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers. Am J Sports M 25:472–478CrossRef
25.
go back to reference Scheffler SU, Sudkamp NP, Gockenjian A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patella tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315PubMed Scheffler SU, Sudkamp NP, Gockenjian A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patella tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315PubMed
26.
go back to reference Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N (1995) Collagen fibril populations in anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sport M 23:203–208CrossRef Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N (1995) Collagen fibril populations in anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sport M 23:203–208CrossRef
27.
go back to reference Tohyama H, Yasuda K, Kitamura Y, Yamamoto E, Hayashi K (2003) The changes in mechanical properties of regenerated and residual tissues in the patellar tendon after removal of its central portion. Clin Biomech 18:765–772CrossRef Tohyama H, Yasuda K, Kitamura Y, Yamamoto E, Hayashi K (2003) The changes in mechanical properties of regenerated and residual tissues in the patellar tendon after removal of its central portion. Clin Biomech 18:765–772CrossRef
28.
go back to reference Weiler A, Peine R, Pashminech-Aza A, Abel C, Sudkamp NP, Hoffman RF (2002) Tendon healing in a bone tunnel: part I. Biomechanical results after biodegradable interference fix fixation in a model of anterior cruciate ligament reconsruction in sheep. Arthroscopy 18:113–123PubMedCrossRef Weiler A, Peine R, Pashminech-Aza A, Abel C, Sudkamp NP, Hoffman RF (2002) Tendon healing in a bone tunnel: part I. Biomechanical results after biodegradable interference fix fixation in a model of anterior cruciate ligament reconsruction in sheep. Arthroscopy 18:113–123PubMedCrossRef
29.
go back to reference Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports M 29:751–761 Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports M 29:751–761
30.
go back to reference Welsh RP (1980) Knee joint structure and function. Clin Orthop Relat Res 147:7–14PubMed Welsh RP (1980) Knee joint structure and function. Clin Orthop Relat Res 147:7–14PubMed
31.
go back to reference Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12:211–227PubMedCrossRef Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12:211–227PubMedCrossRef
32.
go back to reference Williams IF, Heaton A, McCullagh KG (1980) Cell morphology and collagen types in equine tendon scar. Rev Vet Sci 28:302–310 Williams IF, Heaton A, McCullagh KG (1980) Cell morphology and collagen types in equine tendon scar. Rev Vet Sci 28:302–310
33.
go back to reference Yoshikawa T, Tohyama H, Katsura T, Kondo E, Kotani Y, Matsumoto H, Toyama Y, Yasuda K (2006) Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports M 34:1918–1925CrossRef Yoshikawa T, Tohyama H, Katsura T, Kondo E, Kotani Y, Matsumoto H, Toyama Y, Yasuda K (2006) Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports M 34:1918–1925CrossRef
Metadata
Title
Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: an electron, microscopic and morphologic study
Authors
Panayiotis T. Hadjicostas
Panayotis N. Soucacos
Nadezda Koleganova
Gerhard Krohmer
Irina Berger
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 12/2008
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-008-0603-1

Other articles of this Issue 12/2008

Knee Surgery, Sports Traumatology, Arthroscopy 12/2008 Go to the issue