Skip to main content
Top
Published in: Acta Neuropathologica 5/2012

01-05-2012 | Review

Commensal gut flora and brain autoimmunity: a love or hate affair?

Authors: Kerstin Berer, Gurumoorthy Krishnamoorthy

Published in: Acta Neuropathologica | Issue 5/2012

Login to get access

Abstract

Multiple sclerosis (MS) and other chronic inflammatory autoimmune diseases represent major public health challenges in industrialised Western society. MS results from an autoimmune attack against myelin structures by self-reactive lymphocytes, which are normal components of the healthy immune repertoire. The nature of the triggers that convert the innocuous self-reactive lymphocytes into an autoaggressive phenotype is poorly understood. In the past, it was primarily suspected that pathogenic infections trigger MS. However, so far, none of the incriminated pathogenic microbes were firmly associated with the disease. A growing body of evidence in animal models of MS implicates the gut microbiota in the induction of central nervous system (CNS) autoimmunity. The mammalian gut harbors a diverse population of microbial organisms which are essential for our well being. There is an increasing understanding that the gut microbiota not only modulates the local immune functions but also affects the systemic immune system. We are only just beginning to understand the nature of the interactions of the gut microbiota with the host’s immune system especially in the context of autoimmune diseases. This review will address the influence of intestinal microbiota on immune homeostasis and on the development of autoimmune responses at sites distal to the intestine with a particular emphasis placed on a discussion about CNS autoimmunity.
Literature
1.
go back to reference Abdollahi-Roodsaz S, Joosten LAB, Koenders MI et al (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118:205–216PubMedCrossRef Abdollahi-Roodsaz S, Joosten LAB, Koenders MI et al (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118:205–216PubMedCrossRef
2.
go back to reference Abreu MT, Fukata M, Arditi M (2005) TLR signaling in the gut in health and disease. J Immunol 174:4453–4460PubMed Abreu MT, Fukata M, Arditi M (2005) TLR signaling in the gut in health and disease. J Immunol 174:4453–4460PubMed
3.
go back to reference Alam C, Bittoun E, Bhagwat D et al (2011) Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 54:1398–1406PubMedCrossRef Alam C, Bittoun E, Bhagwat D et al (2011) Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 54:1398–1406PubMedCrossRef
4.
go back to reference Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria TH17 cell differentiation. Nature 455:808–812PubMedCrossRef Atarashi K, Nishimura J, Shima T et al (2008) ATP drives lamina propria TH17 cell differentiation. Nature 455:808–812PubMedCrossRef
5.
go back to reference Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341PubMedCrossRef Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341PubMedCrossRef
6.
go back to reference Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118PubMedCrossRef Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118PubMedCrossRef
7.
go back to reference Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRef Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920PubMedCrossRef
8.
go back to reference Bain CC, Mowat AM (2011) Intestinal macrophages—specialised adaptation to a unique environment. Eur J Immunol 41:2494–2498PubMedCrossRef Bain CC, Mowat AM (2011) Intestinal macrophages—specialised adaptation to a unique environment. Eur J Immunol 41:2494–2498PubMedCrossRef
9.
go back to reference Baken KA, Ezendam J, Gremmer ER et al (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112:8–18PubMedCrossRef Baken KA, Ezendam J, Gremmer ER et al (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112:8–18PubMedCrossRef
10.
go back to reference Bauer H, Horowitz RE, Popper H, Levenson SM (1963) Response of lymphatic tissue to microbial flora—studies on germfree mice. Am J Pathol 42:471–483PubMed Bauer H, Horowitz RE, Popper H, Levenson SM (1963) Response of lymphatic tissue to microbial flora—studies on germfree mice. Am J Pathol 42:471–483PubMed
11.
go back to reference Benson A, Pifer R, Behrendt CL, Hooper LV, Yarovinsky F (2009) Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 6:187–196PubMedCrossRef Benson A, Pifer R, Behrendt CL, Hooper LV, Yarovinsky F (2009) Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 6:187–196PubMedCrossRef
12.
go back to reference Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938PubMedCrossRef Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938PubMedCrossRef
13.
go back to reference Berer K, Mues M, Koutroulos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541PubMedCrossRef Berer K, Mues M, Koutroulos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541PubMedCrossRef
14.
go back to reference Bergstrom KSB, Kissoon-Singh V, Gibson DL et al (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathogens 6:e1000902PubMedCrossRef Bergstrom KSB, Kissoon-Singh V, Gibson DL et al (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathogens 6:e1000902PubMedCrossRef
15.
go back to reference Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRef Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRef
16.
go back to reference Brandl K, Plitas G, Mihu CN et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807PubMedCrossRef Brandl K, Plitas G, Mihu CN et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807PubMedCrossRef
17.
go back to reference Breban MA, Moreau MC, Fournier C, Ducluzeau R, Kahn MF (1993) Influence of the bacterial-flora on collagen-induced arthritis in susceptible and resistant strains of rats. Clin Exp Rheumatol 11:61–64PubMed Breban MA, Moreau MC, Fournier C, Ducluzeau R, Kahn MF (1993) Influence of the bacterial-flora on collagen-induced arthritis in susceptible and resistant strains of rats. Clin Exp Rheumatol 11:61–64PubMed
18.
go back to reference Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 48:257–273PubMedCrossRef Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 48:257–273PubMedCrossRef
19.
go back to reference Bush WS, Sawcer SJ, De Jager PL et al (2010) Evidence for polygenic susceptibility to multiple sclerosis—the shape of things to come. Am J Hum Genet 86:621–625PubMedCrossRef Bush WS, Sawcer SJ, De Jager PL et al (2010) Evidence for polygenic susceptibility to multiple sclerosis—the shape of things to come. Am J Hum Genet 86:621–625PubMedCrossRef
20.
go back to reference Calcinaro F, Dionisi S, Marinaro M et al (2005) Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 48:1565–1575PubMedCrossRef Calcinaro F, Dionisi S, Marinaro M et al (2005) Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 48:1565–1575PubMedCrossRef
21.
go back to reference Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130PubMedCrossRef Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130PubMedCrossRef
22.
go back to reference Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28:740–750PubMedCrossRef Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28:740–750PubMedCrossRef
23.
go back to reference Chieppa M, Rescigno M, Huang AYC, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841–2852PubMedCrossRef Chieppa M, Rescigno M, Huang AYC, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841–2852PubMedCrossRef
24.
go back to reference Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu YM, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16:228–231PubMedCrossRef Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu YM, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16:228–231PubMedCrossRef
25.
go back to reference Coombes JL, Siddiqui KRR, Aranciba-Cárcamo CV et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764PubMedCrossRef Coombes JL, Siddiqui KRR, Aranciba-Cárcamo CV et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764PubMedCrossRef
26.
go back to reference Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11:989–996PubMedCrossRef Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11:989–996PubMedCrossRef
27.
go back to reference De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696PubMedCrossRef De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696PubMedCrossRef
28.
go back to reference De Vos AF, Van Meurs M, Brok HP et al (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423PubMed De Vos AF, Van Meurs M, Brok HP et al (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423PubMed
29.
go back to reference Dicksved J, Halfvarson J, Rosenquist M et al (2008) Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J 2:716–727PubMedCrossRef Dicksved J, Halfvarson J, Rosenquist M et al (2008) Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J 2:716–727PubMedCrossRef
30.
go back to reference Duan JY, Chung H, Troy E, Kasper DL (2010) Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7:140–150PubMedCrossRef Duan JY, Chung H, Troy E, Kasper DL (2010) Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7:140–150PubMedCrossRef
31.
go back to reference Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRef Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRef
32.
go back to reference Ezendam J, de KA, Gremmer ER, van Loveren H (2008) Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clin Exp Immunol 154:424–431PubMedCrossRef Ezendam J, de KA, Gremmer ER, van Loveren H (2008) Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clin Exp Immunol 154:424–431PubMedCrossRef
33.
go back to reference Ezendam J, van Loveren H (2008) Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br J Nutr 99:83–90PubMedCrossRef Ezendam J, van Loveren H (2008) Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br J Nutr 99:83–90PubMedCrossRef
34.
go back to reference Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72PubMedCrossRef Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72PubMedCrossRef
35.
go back to reference Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170PubMed Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170PubMed
36.
go back to reference Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the Forkhead transcription factor Foxp3. Immunity 22:329–341PubMedCrossRef Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the Forkhead transcription factor Foxp3. Immunity 22:329–341PubMedCrossRef
37.
go back to reference Gaboriau-Routhiau V, Rakotobe S, Lévuyer E et al (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689PubMedCrossRef Gaboriau-Routhiau V, Rakotobe S, Lévuyer E et al (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689PubMedCrossRef
38.
go back to reference Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560PubMedCrossRef Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560PubMedCrossRef
39.
go back to reference Gray DHD, Gavanescu I, Benoist C, Mathis D (2007) Danger-free autoimmune disease in Aire-deficient mice. Proc Natl Acad Sci USA 104:18193–18198PubMedCrossRef Gray DHD, Gavanescu I, Benoist C, Mathis D (2007) Danger-free autoimmune disease in Aire-deficient mice. Proc Natl Acad Sci USA 104:18193–18198PubMedCrossRef
40.
go back to reference Hall JA, Bouladoux N, Sun CM et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637–649PubMedCrossRef Hall JA, Bouladoux N, Sun CM et al (2008) Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637–649PubMedCrossRef
41.
go back to reference Hase K, Takahashi D, Ebisawa M, Kawano S, Itoh K, Ohno H (2009) Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. Plos One 3:e3033CrossRef Hase K, Takahashi D, Ebisawa M, Kawano S, Itoh K, Ohno H (2009) Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. Plos One 3:e3033CrossRef
42.
go back to reference Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912PubMedCrossRef Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912PubMedCrossRef
43.
go back to reference Hill DA, Artis D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28:623–667PubMedCrossRef Hill DA, Artis D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28:623–667PubMedCrossRef
44.
go back to reference Hill JA, Hall JA, Sun CM et al (2008) Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29:758–770PubMedCrossRef Hill JA, Hall JA, Sun CM et al (2008) Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29:758–770PubMedCrossRef
45.
go back to reference Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498PubMedCrossRef Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498PubMedCrossRef
46.
go back to reference Ivanov II, De Llanos Frutos R, Manel N et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349PubMedCrossRef Ivanov II, De Llanos Frutos R, Manel N et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349PubMedCrossRef
47.
go back to reference Iwata M, Hirakiyama A, Eshima Y, Kageshima H, Kato C, Song S-Y (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–538PubMedCrossRef Iwata M, Hirakiyama A, Eshima Y, Kageshima H, Kato C, Song S-Y (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–538PubMedCrossRef
48.
go back to reference Jia W, Li HK, Zhao LP, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7:123–129PubMedCrossRef Jia W, Li HK, Zhao LP, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7:123–129PubMedCrossRef
49.
go back to reference Johansson ME, Hansson GC (2008) Mucus protects the colon by separating bacteria from the epithelium. Gastroenterology 134:A516CrossRef Johansson ME, Hansson GC (2008) Mucus protects the colon by separating bacteria from the epithelium. Gastroenterology 134:A516CrossRef
50.
go back to reference Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069PubMedCrossRef Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069PubMedCrossRef
51.
go back to reference Johansson-Lindbom B, Svensson M, Pabst O et al (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063–1073PubMedCrossRef Johansson-Lindbom B, Svensson M, Pabst O et al (2005) Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202:1063–1073PubMedCrossRef
52.
go back to reference King C, Sarvetnick N (2011) The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. Plos One 6:e17049PubMedCrossRef King C, Sarvetnick N (2011) The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. Plos One 6:e17049PubMedCrossRef
53.
go back to reference Kira J-I, Yamasaki K, Horiuchi I, Ohyagi Y, Taniwaki T, Kawano Y (1999) Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan. J Neurol Sci 166:53–57PubMedCrossRef Kira J-I, Yamasaki K, Horiuchi I, Ohyagi Y, Taniwaki T, Kawano Y (1999) Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan. J Neurol Sci 166:53–57PubMedCrossRef
54.
go back to reference Kohashi O, Kuwata J, Umehara K, Uemura F, Takahashi T, Ozawa A (1979) Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect Immun 26:791–794PubMed Kohashi O, Kuwata J, Umehara K, Uemura F, Takahashi T, Ozawa A (1979) Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect Immun 26:791–794PubMed
55.
go back to reference Krishnamoorthy G, Holz A, Wekerle H (2007) Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85:1161–1173PubMedCrossRef Krishnamoorthy G, Holz A, Wekerle H (2007) Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85:1161–1173PubMedCrossRef
56.
go back to reference Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392PubMedCrossRef Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392PubMedCrossRef
57.
go back to reference Kuwahara T, Ogura Y, Oshima K et al (2011) The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res 18:291–303PubMedCrossRef Kuwahara T, Ogura Y, Oshima K et al (2011) The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res 18:291–303PubMedCrossRef
58.
go back to reference Lampropoulou V, Hoehlig K, Roch T et al (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773PubMed Lampropoulou V, Hoehlig K, Roch T et al (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773PubMed
59.
60.
go back to reference Lavasani S, Dzhambazov B, Nouri M et al (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. Plos One 5:e9009PubMedCrossRef Lavasani S, Dzhambazov B, Nouri M et al (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. Plos One 5:e9009PubMedCrossRef
61.
go back to reference Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108:4615–4622PubMedCrossRef Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108:4615–4622PubMedCrossRef
62.
go back to reference Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRef Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRef
63.
go back to reference Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197PubMedCrossRef Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197PubMedCrossRef
64.
go back to reference MacPherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485PubMedCrossRef MacPherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485PubMedCrossRef
65.
go back to reference Maldonado MA, Kakkanaiah V, MacDonald GC et al (1999) The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J Immunol 162:6322–6330PubMed Maldonado MA, Kakkanaiah V, MacDonald GC et al (1999) The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J Immunol 162:6322–6330PubMed
66.
go back to reference Manicassamy S, Reizis B, Ravindran R et al (2010) Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329:849–853PubMedCrossRef Manicassamy S, Reizis B, Ravindran R et al (2010) Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329:849–853PubMedCrossRef
67.
go back to reference Maslowski KM, Vieira AT, Ng AW et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286PubMedCrossRef Maslowski KM, Vieira AT, Ng AW et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286PubMedCrossRef
68.
go back to reference Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118:3420–3430PubMed Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118:3420–3430PubMed
69.
go back to reference Matsuzaki T, Nagata Y, Kado S et al (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105:643–649PubMedCrossRef Matsuzaki T, Nagata Y, Kado S et al (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105:643–649PubMedCrossRef
70.
go back to reference Matteoli G, Mazzini E, Iliev ID et al (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59:595–604PubMedCrossRef Matteoli G, Mazzini E, Iliev ID et al (2010) Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59:595–604PubMedCrossRef
71.
go back to reference Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118PubMedCrossRef Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118PubMedCrossRef
72.
go back to reference Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625PubMedCrossRef Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625PubMedCrossRef
73.
go back to reference Mezrich JD, Fechner JH, Zhang XJ, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory t cells. J Immunol 185:3190–3198PubMedCrossRef Mezrich JD, Fechner JH, Zhang XJ, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory t cells. J Immunol 185:3190–3198PubMedCrossRef
74.
go back to reference Mizutani A, Shaheen VM, Yoshida H et al (2005) Pristane-induced autoimmunity in germ-free mice. Clin Immunol 114:110–118PubMedCrossRef Mizutani A, Shaheen VM, Yoshida H et al (2005) Pristane-induced autoimmunity in germ-free mice. Clin Immunol 114:110–118PubMedCrossRef
75.
go back to reference Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341PubMedCrossRef Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341PubMedCrossRef
76.
go back to reference Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8:564–577PubMedCrossRef Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8:564–577PubMedCrossRef
77.
go back to reference Niess JH, Leithauser F, Adler G, Reimann J (2008) Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol 180:559–568PubMed Niess JH, Leithauser F, Adler G, Reimann J (2008) Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol 180:559–568PubMed
78.
go back to reference Nieuwenhuis EES, Matsumoto T, Lindenbergh D et al (2009) Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest 119:1241–1250PubMedCrossRef Nieuwenhuis EES, Matsumoto T, Lindenbergh D et al (2009) Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest 119:1241–1250PubMedCrossRef
79.
go back to reference O’Mahony C, Scully P, O’Mahony D et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathogens 4:e1000112PubMedCrossRef O’Mahony C, Scully P, O’Mahony D et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathogens 4:e1000112PubMedCrossRef
80.
go back to reference Ochoa-Repáraz J, Mielcarz DW, Ditrio LE et al (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 185:4101–4108PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Ditrio LE et al (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 185:4101–4108PubMedCrossRef
81.
go back to reference Ochoa-Repáraz J, Mielcarz DW, Ditrio LE et al (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183:6041–6050PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Ditrio LE et al (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183:6041–6050PubMedCrossRef
82.
go back to reference Ochoa-Repáraz J, Mielcarz DW, Haque-Begum S, Kasper LH (2010) Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes 1:103–108PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Haque-Begum S, Kasper LH (2010) Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes 1:103–108PubMedCrossRef
83.
go back to reference Ochoa-Repáraz J, Mielcarz DW, Wang Y et al (2010) A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3:487–495PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Wang Y et al (2010) A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3:487–495PubMedCrossRef
84.
go back to reference Perdew GH, Babbs CF (1991) Production of Ah receptor ligands in rat fecal suspensions containing tryptophan or indole-3-carbinol. Nutr Cancer 16:209–218PubMedCrossRef Perdew GH, Babbs CF (1991) Production of Ah receptor ligands in rat fecal suspensions containing tryptophan or indole-3-carbinol. Nutr Cancer 16:209–218PubMedCrossRef
85.
go back to reference Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–427PubMedCrossRef Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–427PubMedCrossRef
86.
go back to reference Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 106:15813–15818PubMedCrossRef Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 106:15813–15818PubMedCrossRef
87.
go back to reference Pöllinger B, Krishnamoorthy G, Berer K et al (2009) Spontaneous relapsing–remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206:1303–1316PubMedCrossRef Pöllinger B, Krishnamoorthy G, Berer K et al (2009) Spontaneous relapsing–remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206:1303–1316PubMedCrossRef
88.
go back to reference Pomare EW, Branch WJ, Cummings JH (1985) Carbohydrate fermentation in the human-colon and its relation to acetate concentrations in venous-blood. J Clin Invest 75:1448–1454PubMedCrossRef Pomare EW, Branch WJ, Cummings JH (1985) Carbohydrate fermentation in the human-colon and its relation to acetate concentrations in venous-blood. J Clin Invest 75:1448–1454PubMedCrossRef
89.
go back to reference Pozzilli P, Signore A, Williams AJK, Beales PE (1993) NOD mouse colonies around the world—recent facts and figures. Immunol Today 14:193–196PubMedCrossRef Pozzilli P, Signore A, Williams AJK, Beales PE (1993) NOD mouse colonies around the world—recent facts and figures. Immunol Today 14:193–196PubMedCrossRef
90.
go back to reference Prakash T, Oshima K, Morita H et al (2011) Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 10:273–284PubMedCrossRef Prakash T, Oshima K, Morita H et al (2011) Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 10:273–284PubMedCrossRef
91.
go back to reference Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRef Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71PubMedCrossRef
92.
go back to reference Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–241PubMedCrossRef Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–241PubMedCrossRef
93.
go back to reference Rehakova Z, Capkova J, Stepankova R et al (2000) Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol 61:555–558PubMedCrossRef Rehakova Z, Capkova J, Stepankova R et al (2000) Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol 61:555–558PubMedCrossRef
94.
go back to reference Rescigno M, Urbano M, Valzasina B et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367PubMedCrossRef Rescigno M, Urbano M, Valzasina B et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367PubMedCrossRef
95.
go back to reference Rossini AA, Williams RM, Mordes JP, Appel MC, Like AA (1979) Spontaneous diabetes in the gnotobiotic BB-W rat. Diabetes 28:1031–1032PubMedCrossRef Rossini AA, Williams RM, Mordes JP, Appel MC, Like AA (1979) Spontaneous diabetes in the gnotobiotic BB-W rat. Diabetes 28:1031–1032PubMedCrossRef
96.
go back to reference Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedCrossRef Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedCrossRef
97.
go back to reference Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107:12204–12209PubMedCrossRef Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107:12204–12209PubMedCrossRef
98.
go back to reference Saleh M, Elson CO (2011) Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 34:293–302PubMedCrossRef Saleh M, Elson CO (2011) Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 34:293–302PubMedCrossRef
99.
go back to reference Salvetti M, Ristori G, Bomprezzi R, Pozzilli P, Leslie RDG (2000) Twins: mirrors of the immune system. Immunol Today 21:342–347PubMedCrossRef Salvetti M, Ristori G, Bomprezzi R, Pozzilli P, Leslie RDG (2000) Twins: mirrors of the immune system. Immunol Today 21:342–347PubMedCrossRef
100.
go back to reference Salzman NH, Hung KC, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11:76–82PubMedCrossRef Salzman NH, Hung KC, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11:76–82PubMedCrossRef
101.
go back to reference Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219PubMedCrossRef Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219PubMedCrossRef
102.
go back to reference Scher JU, Abramson SB (2011) The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 7:569–578PubMed Scher JU, Abramson SB (2011) The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 7:569–578PubMed
103.
go back to reference Schulz O, Jaensson E, Persson EK et al (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206:3101–3114PubMedCrossRef Schulz O, Jaensson E, Persson EK et al (2009) Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206:3101–3114PubMedCrossRef
104.
go back to reference Sczesnak A, Segata N, Qin X et al (2011) The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10:260–272PubMedCrossRef Sczesnak A, Segata N, Qin X et al (2011) The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10:260–272PubMedCrossRef
105.
go back to reference Sinkorova Z, Capkova J, Niederlova J, Stepankova R, Sinkora J (2008) Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2k) male mice. Hum Immunol 69:845–850PubMedCrossRef Sinkorova Z, Capkova J, Niederlova J, Stepankova R, Sinkora J (2008) Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2k) male mice. Hum Immunol 69:845–850PubMedCrossRef
106.
go back to reference Slack E, Hapfelmeier S, Stecher B et al (2009) Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325:617–620PubMedCrossRef Slack E, Hapfelmeier S, Stecher B et al (2009) Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325:617–620PubMedCrossRef
107.
go back to reference Smith KD, McCoy KD, MacPherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69PubMedCrossRef Smith KD, McCoy KD, MacPherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69PubMedCrossRef
108.
go back to reference Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736PubMedCrossRef Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736PubMedCrossRef
109.
go back to reference Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290PubMedCrossRef Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290PubMedCrossRef
110.
go back to reference Stecher B, Chaffron S, Kappeli R et al (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathogens 6:e1000711PubMedCrossRef Stecher B, Chaffron S, Kappeli R et al (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathogens 6:e1000711PubMedCrossRef
111.
go back to reference Suzuki K, Meek B, Doi Y et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101:1981–1986PubMedCrossRef Suzuki K, Meek B, Doi Y et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101:1981–1986PubMedCrossRef
112.
go back to reference Takata K, Kinoshita M, Okuno T et al (2011) The lactic acid bacterium Pediococcus acidilactici Suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS ONE 6:e27644PubMedCrossRef Takata K, Kinoshita M, Okuno T et al (2011) The lactic acid bacterium Pediococcus acidilactici Suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS ONE 6:e27644PubMedCrossRef
113.
go back to reference Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000PubMed Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000PubMed
114.
go back to reference Taurog JD, Richardson JA, Croft JT et al (1994) The germ-free state prevents development of gut and joint jnflammatory disease in HLA-B27 transgenic rats. J Exp Med 180:2359–2364PubMedCrossRef Taurog JD, Richardson JA, Croft JT et al (1994) The germ-free state prevents development of gut and joint jnflammatory disease in HLA-B27 transgenic rats. J Exp Med 180:2359–2364PubMedCrossRef
115.
go back to reference Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCrossRef Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCrossRef
116.
go back to reference Ubeda C, Taur Y, Jenq RR et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341PubMedCrossRef Ubeda C, Taur Y, Jenq RR et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341PubMedCrossRef
117.
go back to reference Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class-II molecules and fucosyl asialo Gm1 glycolipids on the small-intestinal epithelial-cells in the ex-germ-free mouse. Microbiol Immunol 39:555–562PubMed Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class-II molecules and fucosyl asialo Gm1 glycolipids on the small-intestinal epithelial-cells in the ex-germ-free mouse. Microbiol Immunol 39:555–562PubMed
118.
go back to reference Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35:1500–1505PubMed Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35:1500–1505PubMed
119.
go back to reference Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host–microbial interface. Proc Natl Acad Sci USA 105:20858–20863PubMedCrossRef Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host–microbial interface. Proc Natl Acad Sci USA 105:20858–20863PubMedCrossRef
120.
go back to reference Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258PubMedCrossRef Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258PubMedCrossRef
121.
go back to reference Van den Broek MF, van Bruggen MC, Koopman JP, Hazenberg MP, Van den Berg WB (1992) Gut flora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats. Clin Exp Immunol 88:313–317PubMedCrossRef Van den Broek MF, van Bruggen MC, Koopman JP, Hazenberg MP, Van den Berg WB (1992) Gut flora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats. Clin Exp Immunol 88:313–317PubMedCrossRef
122.
go back to reference Van der Sluis M, De Koning BAE, De Bruijn ACJM et al (2006) Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology 131:117–129PubMedCrossRef Van der Sluis M, De Koning BAE, De Bruijn ACJM et al (2006) Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology 131:117–129PubMedCrossRef
123.
go back to reference Van Zwam M, Huizinga R, Heijmans N et al (2009) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J Pathol 217:543–551PubMedCrossRef Van Zwam M, Huizinga R, Heijmans N et al (2009) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J Pathol 217:543–551PubMedCrossRef
124.
go back to reference Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRef Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRef
125.
go back to reference Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328:228–231PubMedCrossRef Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328:228–231PubMedCrossRef
126.
go back to reference Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113PubMedCrossRef Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113PubMedCrossRef
127.
go back to reference Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703PubMedCrossRef Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703PubMedCrossRef
128.
go back to reference Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC (2003) Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA 100:12877–12882PubMedCrossRef Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC (2003) Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA 100:12877–12882PubMedCrossRef
129.
go back to reference Wolk K, Witte E, Wallace E et al (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323PubMedCrossRef Wolk K, Witte E, Wallace E et al (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323PubMedCrossRef
130.
go back to reference Wong JM, de SR, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243PubMedCrossRef Wong JM, de SR, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243PubMedCrossRef
131.
go back to reference Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108PubMedCrossRef Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108PubMedCrossRef
132.
go back to reference Wu H-J, Ivanov II, Darce D et al (2010) Gut residing filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–823PubMedCrossRef Wu H-J, Ivanov II, Darce D et al (2010) Gut residing filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–823PubMedCrossRef
133.
go back to reference Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T (2008) NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 173:1714–1723PubMedCrossRef Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T (2008) NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 173:1714–1723PubMedCrossRef
Metadata
Title
Commensal gut flora and brain autoimmunity: a love or hate affair?
Authors
Kerstin Berer
Gurumoorthy Krishnamoorthy
Publication date
01-05-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 5/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-0949-9

Other articles of this Issue 5/2012

Acta Neuropathologica 5/2012 Go to the issue

Thanks to referees

Thanks to referees